Skip to main content
Log in

Role of Oxygen in PECVD Carbon Nanotubes Growth: Experiments and Modeling

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

We investigate by modeling supported by experiments the role of oxygen in carbon nanotubes (CNT) growth by plasma enhanced chemical vapor deposition (PECVD) process. We found that a suitable content of molecular oxygen in a H2/CH4 mixture can significantly increase the vertical CNT growth rate. We take the advantage of such system in order to better understand the mechanisms responsible for nanotube growth in a chemical environment represented by a ternary C–H–O system. In our approach, gas phase and surface chemistries are considered through two quantitative modeling approaches. As a first approximation, the plasma is described by spatially averaged bulk properties, and the species molar fractions are determined using transient zero-dimensional (0D) thermo-chemical model. Then two-dimensional model (2D) is proposed with reducing gas chemistry and considering surface reactions through site fraction and surface molar concentrations. The nanotube growth rate is then obtained by compiling the effects of gas and surface reactions at the gas/substrate interface via surface CHEMKIN software. To get an accurate estimation of the density of sites for bulk CNT growth, SEM and HRTEM analysis were used. The influence of the oxygen content, substrate temperature and microwave power on CNT growth rate are obtained from the model and compared to the experiments. There was good agreement between experimental and the modeling results, providing an insight into optimizing PECVD CNT growth. The specific role of generated oxygenated species such as H2O, OH, CO and O is found to be decisive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Rao R et al (2018) Carbon nanotubes and related nanomaterials: Critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 12:11756–11784

    Article  CAS  PubMed  Google Scholar 

  2. Khivrich I, Ilani S (2020) Atomic-like charge qubit in a carbon nanotube enabling electric and magnetic field nano-sensing. Nat Commun 11:2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang J, Nikolaev P, Carpena-Núñez J, Rao R, Decker K, Islam AE, Kim J, Pitt MA, Myung JI, Maruyama B (2020) Efficient closed-loop maximization of carbon nanotube growth rate using bayesian optimization. Sci Rep 10:9040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klinke C, Bonard JM, Kern K (2005) Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes. Phys Rev B 71:035403

    Article  Google Scholar 

  5. Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Milne RJ, WI, (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308–5317

    Article  CAS  Google Scholar 

  6. Hofmann S, Ducati C, Robertson J, Kleinsorge B (2003) Low temperature growth of carbon nanotubes by plasma enhanced chemical vapor deposition. Appl Phys Lett 83:135–137

    Article  CAS  Google Scholar 

  7. Hofmann S, Csanyi G, Ferrari AC, Payne MC, Robertson J (2005) Surface diffusion: The low activation energy path for nanotube growth. Phys Rev Lett 95:036101

    Article  CAS  PubMed  Google Scholar 

  8. Raty JY, Gygi F, Galli G (2005) Growth of carbon nanotubes on metal nanoparticles: A microscopic mechanism from ab initio molecular dynamics simulations. Phys Rev Lett 95:096103

    Article  PubMed  Google Scholar 

  9. Liu K, Jiang K, Feng C, Chen Z, Fan S (2005) A growth mark method for studying growth mechanism of carbon nanotube arrays. Carbon 43:2850–2856

    Article  CAS  Google Scholar 

  10. Wirth CT, Zhang C, Zhong G, Hofmann S, Robertson J (2009) Diffusion- and reaction-limited growth of carbon nanotube forests. ACS Nano 3:3560–3566

    Article  CAS  PubMed  Google Scholar 

  11. Neyts EC (2012) PECVD growth of carbon nanotubes: From experiment to simulation. J Vac Sci Technol B 30:030803

    Article  Google Scholar 

  12. Puretzky AA, Geohegan DB, Jesse S, Eres IIN, G, (2005) In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl Phys A 81:223–240

    Article  CAS  Google Scholar 

  13. Naha S, Puri IK (2008) A model for catalytic growth of carbon nanotubes. J Phys D 41:065304

    Article  Google Scholar 

  14. Grujicic M, Cao G, Gersten B (2002) Optimization of the chemical vapor deposition process for carbon nanotubes fabrication. Appl Surf Sci 191:223–239

    Article  CAS  Google Scholar 

  15. Lysaght AC, Chiu WKS (2009) The role of surface species in chemical vapor deposited carbon nanotubes. Nanotechnology 20:115605

    Article  PubMed  Google Scholar 

  16. Lysaght AC, Chiu WKS (2008) Modeling of the carbon nanotube chemical vapor deposition process using methane and acetylene precursor gases. Nanotechnology 19:165607

    Article  PubMed  Google Scholar 

  17. Hosseini MR, Jalili N, Bruce DA (2009) A time-dependent multiphysics, multiphase modeling framework for carbon nanotube synthesis using chemical vapor deposition. AIChE J 55:3152–3167

    Article  CAS  Google Scholar 

  18. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364

    Article  CAS  PubMed  Google Scholar 

  19. Futaba DN, Goto J, Yasuda S, Yamada T, Yumura M, Hata K (2009) General rules governing the highly efficient growth of carbon nanotubes. Adv Mater 21:4811–4815

    Article  CAS  PubMed  Google Scholar 

  20. Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360:229–234

    Article  CAS  Google Scholar 

  21. Byon HR, Lim HS, Song HJ, Choi HC (2007) A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process. Bull Korean Chem Soc 28:2056–2060

    Article  CAS  Google Scholar 

  22. Lee H, Kang YS, Lee PS, Lee JY (2002) Hydrogen plasma treatment on catalytic layer and effect of oxygen additions on plasma enhanced chemical vapor deposition of carbon nanotube. J Alloys Compd 330–332:569–573

    Article  Google Scholar 

  23. Zhang G, Mann D, Zhang L, Javey A, Li Y, Yenilmez E, Wang Q, McVittie JP, Nishi Y, Gibbons J, Dai H (2005) Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc Natl Acad Sci 102:16141–16145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi W, Li J, Polsen ES, Oliver CR, Zhao Y, Meshot ER, Barclay M, Fairbrother DH, Hart AJ, Plata DL (2017) Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes. Nanoscale 9:5222–5233

    Article  CAS  PubMed  Google Scholar 

  25. Amama PB, Pint CL, McJilton L, Kim SM, Stach EA, Murray PT, Hauge RH, Maruyama B (2009) Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett 9:44–49

    Article  CAS  PubMed  Google Scholar 

  26. Lungu CP, Mustata I, Musa G, Lungu AM, Zaroschi V, Iwasaki K, Tanaka R, Matsumura Y, Iwanaga I, Tanaka H, Oi T, Fujita K (2005) Formation of nanostructured Re–Cr–Ni diffusion barrier coatings on Nb superalloys by TVA method. Surf Coat Technol 200:399–402

    Article  CAS  Google Scholar 

  27. Ciupina V, Vladoiu R, Lungu CP, Dinca V, Contulov M, Mandes A, Popov P, Prodan G (2012) Investigation of the SiC thin films synthetized by Thermionic Vacuum Arc method (TVA). Eur Phys J D 66:99

    Article  Google Scholar 

  28. Andalouci A, Roussigné Y, Farhat S, Chérif SM (2019) Magnetic and magneto-optical properties of assembly of nanodots obtained from solid-state dewetting of ultrathin cobalt layer. J Phys Condens Matter 31:495805

    Article  CAS  PubMed  Google Scholar 

  29. Pashova K, Hinkov I, Aubert X, Prasanna S, Bénédic F, Farhat S (2019) Graphene synthesis by microwave plasma chemical vapor deposition: Analysis of the emission spectra and modeling. Plasma Sources Sci Technol 28:045001

    Article  CAS  Google Scholar 

  30. Mehedi HA, Baudrillart B, Alloyeau D, Mouhoub O, Ricolleau C, Pham VD, Chacon C, Gicquel A, Lagoute J, Farhat S (2016) Synthesis of graphene by cobalt-catalyzed decomposition of methane in plasma-enhanced CVD: optimization of experimental parameters with Taguchi method. J Appl Phys 120:065304

    Article  Google Scholar 

  31. Scott CD, Farhat S, Gicquel A, Hassouni K, Lefebvre M (1996) Determining electron temperature and density in a hydrogen microwave plasma. J Thermophys Heat Tr 10:426–435

    Article  CAS  Google Scholar 

  32. Khalilov U, Bogaerts A, Hussain S, Kovacevic E, Brault P, Boulmer-Leborgne C, Neyts EC (2017) Nanoscale mechanisms of CNT growth and etching in plasma environment. J Phys D Appl Phys 50:184001

    Article  Google Scholar 

  33. Skukla B, Saito T, Ohmori S, Koshi M, Yumura M, Iijima S (2010) Interdependency of gas phase intermediates and chemical vapor deposition growth of single wall carbon nanotubes. Chem Mater 22:6035–6043

    Article  CAS  Google Scholar 

  34. Buckman SJ, Phelps AV (1985) Tabulations of collision cross sections and calculated transport and reaction coefficients for electrons in H2 and D2. Univ. Of Colorado, JILA Information Center Rept. 27, Boulder, CO

  35. Marinov NM, Pitz WJ, Westbrook CK, Vincitore AM, Castaldi MJ, Senkan SM, Melius CF (1998) Aromatic and polyaromatic hydrocarbon formation in a laminar premixed n-butane flame. Combust Flame 114:192–213

    Article  CAS  Google Scholar 

  36. Dandy D, Yun J (1997) Momentum and Thermal boundary-layer thickness in a stagnation flow chemical vapor deposition reactor. J Mater Res 12:1112–1121

    Article  CAS  Google Scholar 

  37. Hindmarsh AC (1983). In: Stepleman RS et al (eds) IMACS transactions on scientific computation. North-Holland, Amsterdam, p 55

    Google Scholar 

  38. Hinkov I, Farhat S, Lungu CP, Gicquel A, Silva F, Mesbahi A, Brinza O, Porosnicu C, Anghel A (2014) Microwave plasma enhanced chemical vapor deposition of carbon nanotubes. J Surf Eng Mater Adv Technol 4:196–209

    CAS  Google Scholar 

  39. Hinkov I, Pashova K, Farhat S (2019) Modeling of plasma-enhanced chemical vapor deposition growth of graphene on cobalt substrates. Diam Relat Mater 93:84–95

    Article  CAS  Google Scholar 

  40. Robertson J, Zhong GF, Esconjauregui CS, Bayer BC, Zhang C, Fouquet M, Hofmann S (2012) Applications of carbon nanotubes grown by chemical vapor deposition. Jpn J Appl Phys 51:0101

    Article  Google Scholar 

  41. Rose F, Pocker D, Xiao QF, Rawat V, Brinkman E, Marchon B (2013) Low surface energy and corrosion resistant ultrathin TiSiC disk overcoat. J Appl Phys 113:213513

    Article  Google Scholar 

  42. Kausch HH, Fesko DG, Tschoegl NW (1971) The random packing of circles in a plane. J Colloid Interface Sci 37:603–611

    Article  CAS  Google Scholar 

  43. Andalouci A, Brinza O, Porosnicu C, Lungu C, Mazaleyrat F, Roussigné Y, Chérif SM, Farhat S (2020) Morphological and magnetic study of plasma assisted solid-state dewetting of ultra-thin cobalt films on conductive titanium silicon nitride supports. Thin Solid Films 703:137973

    Article  CAS  Google Scholar 

  44. Andalouci A, Roussigné Y, Farhat S, Chérif SM (2020) Low frequency vibrations observed on assemblies of vertical multiwall carbon nanotubes by Brillouin light scattering: determination of the Young modulus. Phys Condens Matter 32:455701

    Article  CAS  Google Scholar 

  45. Uryu S, Ando T (2005) Electronic intertube transfer in double-wall carbon nanotubes. Phys Rev B 72:245403

    Article  Google Scholar 

  46. Grujicic M, Cao G, Gersten B (2002) An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes. Mat Sci Eng B 94:247–259

    Article  Google Scholar 

  47. Maier L, Schädel B, Delgado KH, Tischer S, Deutschmann O (2011) Steam reforming of methane over nickel: development of a multi-step surface reaction mechanism. Top Catal 54:845–858

    Article  CAS  Google Scholar 

  48. Delgado KH, Maier L, Tischer S, Zellner A, Stotz H, Deutschmann O (2015) Surface reaction kinetics of steam- and CO2-reforming as well as oxidation of methane over nickel-based catalysts. Catalysts 5:871–904

    Article  CAS  Google Scholar 

  49. Futaba DN, Hata K, Yamada T, Mizuno K, Yumura M, Iijima S (2005) Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys Rev Lett 95:056104

    Article  PubMed  Google Scholar 

  50. Futaba DN, Hata K, Namai T, Yamada T, Mizuno K, Hayamizu Y, Iijima S (2006) 84% catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach. J Phys Chem B 110:8035–8038

    Article  CAS  PubMed  Google Scholar 

  51. Sinha S, Rahman RK, Raj A (2017) On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: pyrene and fluoranthene formation from benzyl–indenyl addition. Phys Chem Chem Phys 19:19262–19278

    Article  CAS  PubMed  Google Scholar 

  52. Garg RK et al (2008) Effects of feed gas composition and catalyst thickness on carbon nanotube and nanofiber synthesis by plasma enhanced chemical vapor deposition. J Nanosci Nanotechnol 8(6):3068–3076

    Article  CAS  PubMed  Google Scholar 

  53. Hosseini MR, Jalili N, Bruce DA (2009) A time-dependent multiphysics, multiphase modeling framework for carbon nanotube synthesis using chemical vapor deposition. AIChE J 55(12):3152–3167

    Article  CAS  Google Scholar 

  54. Jimenez-Redondo M, Carrasco E, Herrero VJ, Tanarro I (2015) Chemistry in glow discharges of H2/O2 mixtures Diagnostics and modelling. Plasma Sources Sci Technol 24:015029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo YC, Fu YC, Yann H, Mou CY, Liu YH (2021) Selective growths of single-walled carbon nanotubes from mesoporous supports via CO disproportionation. J Chin Chem Soc 68:491–499

    Article  CAS  Google Scholar 

  56. Gangoli VS, Godwin MA, Reddy G, Bradley RK, Barron AR (2019) The state of HiPco single-walled carbon nanotubes in 2019. C 5:65

    Google Scholar 

  57. ANSYS 2020. ANSYS Chemkin-Pro Theory Manual, Release 2020 R1, January 2020

Download references

Acknowledgements

We thank Dr Carl D. Scott from Johnson Space Center, Houston TX for his valuable help during models development. ANR (Agence Nationale de la Recherche), and CGI (Commissariat à l’Investissement d’Avenir) are gratefully acknowledged for their financial support of this work through Labex SEAM (Science and Engineering for Advanced Materials and devices) ANR 11 LABX 086, ANR 11 IDEX 05 02, and ANR14CE08-0018. L’Agence Universitaire de la Francophonie (AUF) and the Fund “Scientific Research”, Bulgaria are gratefully acknowledged for their financial support of this work via bilateral project TherMoVapCar. Embassy of France in Nouakchott, Mauritania and University of Nouakchott are gratefully acknowledged for funding through international mobility fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Farhat.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5616 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andalouci, A., Hinkov, I., Brinza, O. et al. Role of Oxygen in PECVD Carbon Nanotubes Growth: Experiments and Modeling. Plasma Chem Plasma Process 43, 757–786 (2023). https://doi.org/10.1007/s11090-023-10317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10317-y

Keywords

Navigation