Skip to main content
Log in

Steam Reforming of Methane Over Nickel: Development of a Multi-Step Surface Reaction Mechanism

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A detailed multi-step reaction mechanism is developed for modeling steam reforming of methane over nickel-based catalysts. The mechanism also includes partial and total oxidation reactions, water–gas shift reactions, formation of carbon monolayers, and methanation reactions. A method is presented for ensuring thermodynamic consistency in the development of surface reaction mechanisms. The applicability of the mechanism is tested by simulating experimental investigations of SR of methane on a Ni-coated monolithic cordierite catalyst as well as experimental studies from literature. The reactive flow in the channels of the experimentally used monolithic structures is modeled by a two-dimensional flow field analysis of a single monolith channel coupled with the reaction mechanism developed. The gas composition and surface coverage with adsorbed species are calculated as function of the position in the channel. The model developed is able to properly describe steam reforming of methane over the nickel catalysts for wide ranges of temperature and steam/methane ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rostrup-Nielsen JR (1984) In: Anderson JR, Boudart M (eds) Catalytic steam reforming in catalysis—science and technology. Springer-Verlag, Berlin

  2. Levent M, Gunn DJ, El Bousiffi MA (2003) Int J Hydrogen Energy 28:945

    Article  CAS  Google Scholar 

  3. Michael BC, Donazzi A, Schmidt A (2009) J Catal 265:117

    Article  CAS  Google Scholar 

  4. Trimm DL (1997) Catal Today 37:233

    Article  CAS  Google Scholar 

  5. Yang Z, Zhang Y, Wang X (2010) Energy Fuels 24:785

    Article  CAS  Google Scholar 

  6. Ochoa-Fernández E, Lacalle-Vilà C, Christensen KO, Walmsley JC, Rønninga M, Holmen A, Chen D (2007) Top Catal 45:3–8

    Article  Google Scholar 

  7. Dissanayake D, Rosynek MP, Kharas KS, Lunsford JH (1991) J Catal 132:117

    Article  CAS  Google Scholar 

  8. Vermeiren WJM, Blomsma E, Jacobs PA (1992) J Catal 13:427

    CAS  Google Scholar 

  9. Hannemann S, Grunwaldt JD, van Vegten N (2007) Catal Today 126:54

    Article  CAS  Google Scholar 

  10. Hickman DA, Schmidt LD (1993) AIChE J 39:1164

    Article  CAS  Google Scholar 

  11. Choudhary VR, Rajput AM, Rane VH (1992) Catal Lett 16:269

    Article  CAS  Google Scholar 

  12. Qin D, Lapszewicz J, Jiang X (1996) J Catal 159:140

    Article  CAS  Google Scholar 

  13. Gadalla AM, Sommer ME (1989) Chem Eng Sci 44:2825

    Article  CAS  Google Scholar 

  14. Liu ZW, Roh HS, Jun KW (2003) J Ind Eng Chem 9:753

    CAS  Google Scholar 

  15. Bradford MCJ, Vannice MA (1996) Appl Catal A 142:97

    Article  CAS  Google Scholar 

  16. Scognamiglio D, Russo L, Maffettone P (2009) Ind Eng Chem Res 48:1804

    Article  CAS  Google Scholar 

  17. Schwiedernoch R, Tischer S, Correa C, Deutschmann O (2003) Chem Eng Sci 58:633

    Article  CAS  Google Scholar 

  18. Deutschmann O, Schmidt L (1998) AIChE J 44:2465

    Article  CAS  Google Scholar 

  19. Mhadeshwar AB, Vlachos DGJ (2005) Phys Chem B 109:16819

    Article  CAS  Google Scholar 

  20. Deutschmann O, Schwiedernoch R, Maier L, Chatterjee D (2001) In: Iglesia E, Spivey JJ, Fleisch TH (eds) Natural gas conversion VI, vol 136. Studies in surface science and catalysis. Elsevier, Amsterdam

  21. Quiceno R, Pérez-Ramírez J, Warnatz J, Deutschmann O (2006) Appl Catal A 303:166

    Article  CAS  Google Scholar 

  22. Xu J, Froment GF (1989) AIChE J 35:88

    Article  CAS  Google Scholar 

  23. Chen D, Lødeng R, Omdahl K, Anundskås A, Olsvik O, Holmen A (2001) Stud Surf Sci Catal 139:93

    Article  CAS  Google Scholar 

  24. Rostrup-Nielsen JR, Hansen JHB (1993) J Catal 144:38

    Article  CAS  Google Scholar 

  25. Rostrup-Nielsen JR, Christiansen LJ, Bak Hausen J-H (1988) Appl Catal 43:287

    Article  CAS  Google Scholar 

  26. Bengaard HS, Nørskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) J Catal 209:365

    Article  CAS  Google Scholar 

  27. Hoang DL, Chan SH, Ding OL (2005) Chem Eng J 112:1

    Article  CAS  Google Scholar 

  28. Mogensen D, Grunwaldt J-D, Hendriksen PV, Dam-Johansen K, Nielsen JU (2011) J Power Sources 196:25

    Article  CAS  Google Scholar 

  29. Enger BC, Lødeng R, Holmen A (2008) Appl Catal A 346:1–27

    Article  CAS  Google Scholar 

  30. Wei J, Iglesia E (2004) J Catal 224:370

    Article  CAS  Google Scholar 

  31. Aparicio LM (1997) J Catal 165:262

    Article  CAS  Google Scholar 

  32. Chen D, Lødeng R, Svendsen H, Holmen A (2011) Ind Eng Chem Res 50(5):2600

    Article  CAS  Google Scholar 

  33. Wang S-G, Liao X-Y, Hu J, Cao D-B, Li Y-W, Wang J, Jiao H (2007) Surf Sci 601:1271

    Article  CAS  Google Scholar 

  34. Wang S-G, Cao D-B, Li Y-W, Wang J, Jiao H (2006) J Phys Chem B 110:9976

    Article  CAS  Google Scholar 

  35. Blaylock DW, Ogura T, Green WH, Beran GJO (2009) J Phys Chem C 113:4898

    Article  CAS  Google Scholar 

  36. Hecht E, Gupta GK, Zhu H, Dean AM, Kee RJ, Maier L, Deutschmann O (2005) Appl Catal A 295:40

    Article  CAS  Google Scholar 

  37. Janardhanan VM, Deutschmann O (2006) J Power Sources 162:1192

    Article  CAS  Google Scholar 

  38. Schädel BT, Deutschmann O (2007) In: Noronha FB, Schmal M, Sousa-Aguiar EF (eds) Natural gas conversion VIII, vol 167. Studies in surface science and catalysis. Elsevier, Amsterdam, p 207

  39. Schädel BT, Duisberg M, Deutschmann O (2009) Catal Today 142:42

    Article  Google Scholar 

  40. Raja LL, Kee RJ, Deutschmann O, Warnatz J, Schmidt LD (2000) Catal Today 59:47

    Article  CAS  Google Scholar 

  41. Coltrin ME, Kee RJ, Rupley FM (1990) SURFACE CHEMKIN, version 4.0, a Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface–gas-phase interface. Sandia National Laboratories report, SAND90-8003B

  42. Deutschmann O (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Computational fluid dynamics simulation of catalytic reactors. Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim

  43. Deutschmann O, Tischer S, Kleditzsch S, Janardhanan VM, Correa C, Chatterjee D, Mladenov N, Minh HD (2008) DETCHEM™ Software package, 2.2 edn. Karlsruhe. www.detchem.com.

  44. Tischer S, Deutschmann O (2005) Catal Today 105:407

    Article  CAS  Google Scholar 

  45. Shustorovich E (1990) Adv Catal 37:101

    Article  CAS  Google Scholar 

  46. Shustorovich E, Sellers H (1998) Surf Sci Rep 31:5

    Article  Google Scholar 

  47. Bell AT (1991) In: Shustorovich E (ed) Metal surface reaction energetics: theory and application to heterogeneous catalysis, chemisorption and surface diffusion. Wiley-VCH, Weinheim

  48. Beebe TP Jr, Goodman DW, Kay BD, Yates JT Jr (1987) J Chem Phys 87:2305

    Article  CAS  Google Scholar 

  49. Chorkendorff I, Alstrup I, Ullmann S (1990) Surf Sci 227:291

    Article  CAS  Google Scholar 

  50. Nielsen BØ, Luntz AC, Holmblad PM, Chorkendorff I (1995) Catal Lett 32:15

    Article  CAS  Google Scholar 

  51. Yang H, Whitten JL (1992) J Chem Phys 96:5529

    Article  CAS  Google Scholar 

  52. Kratzer P, Hammer B, Nørskov JK (1996) J Chem Phys 105:5595

    Article  CAS  Google Scholar 

  53. Henkelman G, Arnaldsson A, Jonsson H (2006) J Chem Phys 124:4706

    Article  Google Scholar 

  54. Michaelides A, Hu P (2000) J Chem Phys 112:6006

    Article  CAS  Google Scholar 

  55. Michaelides A, Hu P (2000) J Chem Phys 112:8120

    Article  CAS  Google Scholar 

  56. Ceyer ST, Yang QY, Lee MB, Beckeler JD, Johnson AD (1993) In: Bibby DH, Chang CD. Howe RF, Yurchak S (eds) Methane conversion. Elsevier, Amsterdam

  57. Erdohelyi A, Cserenyi J, Solymosi F (1993) J Catal 141:287

    Article  CAS  Google Scholar 

  58. Yan Q, Wu T, Yang L, Luo C, Weng W, Chao Z, Wan H (2000) J Nat Gas Chem 9:1

    CAS  Google Scholar 

  59. Hei MJ, Chen HB, Yi J, Lin YJ, Lin YZ, Wie G, Liao DW (1998) Surf Sci 417:82

    Article  CAS  Google Scholar 

  60. Pistonesi C, Juan A, Irigoyen B, Amadeo N (2007) Appl Surf Sci 253:4427

    Article  CAS  Google Scholar 

  61. Mhadeshwar AB, Wang H, Vlachos DGJ (2003) Phys Chem B 107:12721

    Article  CAS  Google Scholar 

  62. Kroll VCH, Swaan HM, Mirodatos C (1996) J Catal 161:409

    Article  CAS  Google Scholar 

  63. Ryu J-H, Lee KY (2007) J Power Sources 171:499

    Article  CAS  Google Scholar 

  64. Heon J, Yoon WL (2003) J Power Sources 124:76

    Article  Google Scholar 

  65. Zhu H, Kee RJ, Janardhanan VM, Deutschmann O, Goodwin DG (2005) J Electrochem Soc 152:A2427

    Article  CAS  Google Scholar 

  66. Christmann K (1991) In: Baumgärtel H, Franck EU, Grünbein W (eds) Topics in physical chemistry, vol 1. Steinkopf Verlag, Darmstadt

  67. Brass SG, Ehrlich G (1987) Surf Sci 187:21

    Article  CAS  Google Scholar 

  68. Matsushima T (1983) Surf Sci 127:403

    Article  CAS  Google Scholar 

  69. Christmann K, Scchober O, Ertl G, Neumann M (1974) J Chem Phys 60:4528

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Deutschmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, L., Schädel, B., Herrera Delgado, K. et al. Steam Reforming of Methane Over Nickel: Development of a Multi-Step Surface Reaction Mechanism. Top Catal 54, 845 (2011). https://doi.org/10.1007/s11244-011-9702-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11244-011-9702-1

Keywords

Navigation