Skip to main content
Log in

In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Direct measurements of carbon nanotube growth kinetics are described based upon time-resolved reflectivity (TRR) of a HeNe laser beam from vertically aligned nanotube arrays (VANTAs) as they grow during chemical vapor deposition (CVD). Growth rates and terminal lengths were measured in situ for VANTAs growing during CVD between 535 °C and 900 °C on Si substrates with evaporated Al/Fe/Mo multi-layered catalysts and acetylene feedstock at different feedstock partial pressures. Methods of analysis of the TRR signals are presented to interpret catalyst particle formation and oxidation, as well as the porosity of the VANTAs. A rate-equation model is developed to describe the measured kinetics in terms of activation energies and rate constants for surface carbon formation and diffusion on the catalyst nanoparticle, nanotube growth, and catalyst over-coating. Taken together with the TRR data, this model enables basic understanding and optimization of growth conditions for any catalyst/feedstock combination. The model lends insight into the main processes responsible for the growth of VANTAs, the measured number of walls in the nanotubes at different temperatures, conditions for growth of single-wall carbon nanotube arrays, and likely catalyst poisoning mechanisms responsible for the sharp decline in growth rates observed at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Dai: Acc. Chem. Res. 35, 1035 (2002)

    Article  Google Scholar 

  2. R. Andrews, D. Jacques, D. Qian, T. Rantell: Acc. Chem. Res. 35, 1008 (2002)

    Article  Google Scholar 

  3. R.T.K. Baker: Carbon 27, 315 (1989)

    Article  Google Scholar 

  4. S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrrup-Nielsen, F. Abild-Petersen, J.K. Norskov: Nature 427, 426 (2004)

    Article  ADS  Google Scholar 

  5. J.-M. Bonard, M. Croci, F. Conus, T. Stöckli, A. Chatelain: Appl. Phys. Lett. 81, 2836 (2002)

    Article  ADS  Google Scholar 

  6. D.B. Geohegan, A.A. Puretzky, I.N. Ivanov, S. Jesse, G. Eres, J.Y. Howe: Appl. Phys. Lett. 83, 1851 (2003)

    Article  ADS  Google Scholar 

  7. D.H. Kim, H.S. Jang, C.D. Kim, D.S. Cho, H.S. Yang, H.O. Kang, B.K. Min, H.R. Lee: Nanoletters 3, 863 (2003)

    Article  ADS  Google Scholar 

  8. X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu, D. Wu: Chem. Phys. Lett. 362, 285 (2002)

    Article  ADS  Google Scholar 

  9. Y.T. Lee, J. Park, Y.S. Choi, H. Ryu, H.J. Lee: J. Phys. Chem. B 106, 7614 (2002)

    Article  Google Scholar 

  10. Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Wu, W.Y. Zhou, W.Z. Li, L.X. Qian: Nature 394, 631 (1998)

    Article  ADS  Google Scholar 

  11. L. Delzeit, C.V. Nguyen, B. Chen, R. Stevens, A. Cassell, J. Han, M. Meyyappan: J. Phys. Chem. B 106, 5629 (2002)

    Article  Google Scholar 

  12. K. Jiang, Q. Li, S. Fan: Nature 419, 801 (2002)

    Article  ADS  Google Scholar 

  13. G. Eres, A.A. Puretzky, D.B. Geohegan, H. Cui: Appl. Phys. Lett. 84, 1759 (2004)

    Article  ADS  Google Scholar 

  14. L. Delzeit, B. Chen, A. Cassell, R. Stevens, C.V. Nguyen, M. Meyyappan: Chem. Phys. Lett. 348, 368 (2001)

    Article  ADS  Google Scholar 

  15. H. Cui, G. Eres, J.Y. Howe, A. Puretzky, M. Varela, D.B. Geohegan, D.H. Lowndes: Chem. Phys. Lett. 374, 222 (2003)

    Article  ADS  Google Scholar 

  16. K. Ujihara: J. Appl. Phys. 43, 2376 (1972)

    Article  ADS  Google Scholar 

  17. L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, E.J. Mittemeijer: J. Appl. Phys. 92, 1649 (2002)

    Article  ADS  Google Scholar 

  18. ‘The Standard Enthalpy of Formation of Al2O3 (Corundum) is -1675.7±1.3 kJ/mol’. In: Handbook of Chemistry and Physics, 77th edn., ed. by D.R. Lide (CRC, Boca Raton, New York, London, Tokyo 1996–1997) p. 5-1

  19. Constitution of Binary Alloys, 2nd edn. (Metall. Metall. Eng. Ser.), ed. by M. Hansen (McGraw-Hill, New York, Toronto, London 1958) pp. 132–134

  20. Q. Jiang, H.Y. Tong, D.T. Hsu, K. Okuyama, F.G. Shi: Thin Solid Films 312, 357 (1998)

    Article  ADS  Google Scholar 

  21. M. Zhang, M.Yu. Efremov, F. Schiettekatte, E.A. Olson, A.T. Kwan, S.L. Lai, T. Wisleder, J.E. Greene, L.H. Allen: Phys. Rev. B 62, 10548 (2000)

    Article  ADS  Google Scholar 

  22. T. de los Arcos, Z.M. Wu, P. Oelhafen: Chem. Phys. Lett. 380, 419 (2003)

    Article  ADS  Google Scholar 

  23. W. Theiss: Surf. Sci. Rep. 29, 91 (1997)

    Article  ADS  Google Scholar 

  24. G.E. Jellison, Jr., F.A. Modine: J. Appl. Phys. 76, 3758 (1994)

    Article  ADS  Google Scholar 

  25. E.A. Rohlfing: J. Chem. Phys. 118, 7622 (2003)

    Article  Google Scholar 

  26. R.T.K. Baker, P.S. Harris: in Chemistry and Physics of Carbon, Vol. 14, ed. by P.L. Walker, Jr., P.A. Thrower (Marcel Dekker, New York, Basel 1978) p. 102

  27. R.T.K. Baker, M.A. Barber, P.S. Barber, P.S. Harris, F.S. Feates, R.J. Waite: J. Catal. 26, 51 (1972)

    Article  Google Scholar 

  28. H. Kanzow, A. Schmalz, A. Ding: Chem. Phys. Lett. 295, 525 (1998)

    Article  ADS  Google Scholar 

  29. O.A. Louchev, T. Laude, Y. Sato, H. Kanda: J. Chem. Phys. 118, 7622 (2003)

    Article  ADS  Google Scholar 

  30. O.A. Louchev, T. Laude, Y. Sato, H. Kanda: Phys. Rev. E 66, 011 601 (2002)

    Article  Google Scholar 

  31. W.H. Hung, S.L. Bernasek: Surf. Sci. 339, 272 (1995)

    Article  ADS  Google Scholar 

  32. G.D. Lee, S. Han, J. Yu, J. Ihm: Phys. Rev. B 66, 081 403-1 (2002)

    Google Scholar 

  33. O.A. Louchev, Y. Sato, H. Kanda: Appl. Phys. Lett. 80, 2752 (2002)

    Article  ADS  Google Scholar 

  34. F. Ding, K. Bolton, A. Rosen: J. Vac. Sci. Technol. A 22, 1471 (2004)

    Article  ADS  Google Scholar 

  35. K. Hata, D.N. Futuba, K. Mizuno, T. Namai, M. Yumura, S. Iijima: Science 306, 1362 (2004)

    Article  ADS  Google Scholar 

  36. T. Tanzawa, W.C. Gardiner, Jr.: J. Phys. Chem. 84, 236 (1980)

    Article  Google Scholar 

  37. M. Frenklach, S. Taki, M.B. Durgaprasad, R.A. Matula: Combust. Flame 54, 81 (1983)

    Article  Google Scholar 

  38. D.B. Geohegan, A.A. Puretzky, G. Eres, I.N. Ivanov: to be published

  39. H.M. Christen, A.A. Puretzky, H. Cui, K. Belay, P.H. Fleming, D.B. Geohegan, D.H. Lowndes: Nanoletters 4, 1939 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.A. Puretzky.

Additional information

PACS

61.46.+w; 81.07.De; 81.16.Hc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puretzky, A., Geohegan, D., Jesse, S. et al. In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl. Phys. A 81, 223–240 (2005). https://doi.org/10.1007/s00339-005-3256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3256-7

Keywords

Navigation