Skip to main content
Log in

An XPS Study with Depth Profiling for the Surface Oxide Layer Formed on Aluminides Produced on Superalloy 690 Substrates

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Superalloy 690 substrates containing mainly Cr and Ni aluminides on the uppermost surface, formed by atmospheric plasma spraying and heat treatment, were oxidized at 1273 K in air for 2 h. Quantitative X-ray photoelectron spectroscopy (XPS) analyses indicated that the outermost surface layer formed on aluminides is composed of ~ 21.0 at.% Al+3 (as Al2O3), 17.0 at.% Al0 (elemental aluminium), 1.4 at.% Cr+3 (as Cr2O3) and 60.5 at.% O (in Al2O3 and Cr2O3 and also includes oxygen contaminant). Surface sputtering for 5 min exhibited splitting of Cr2p3/2 peak into a doublet comprising Cr+3 (0.9 at.%) and Cr0 (0.4 at.%) with the presence of 1.15 at.% Ni0 in the surface layer that mainly contained ~ 37.3 at.% Al+3, 7.3 at.% Al0 and 52.9 at.% O. Surface sputtering for 15 min indicated surface composition similar to surface sputtered for 5 min but with a marked reduction in ratio of Al+3/Al0 (32.2 at.% Al+3/11.90 at.% Al0) in the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. C. Deevi and V. K. Sikka, Intermetallics 4, 357 (1996).

    Article  Google Scholar 

  2. N. S. Stoloff, Materials Science and Engineering A 258, 1 (1998).

    Article  Google Scholar 

  3. R. S. Sundar, R. C. Balligidad, Y. V. R. K. Prasad, and D. H. Sastry, Materials Science and Engineering A 258, 219 (1998).

    Article  Google Scholar 

  4. G. W. Goward, Surface and Coating Technology 108–109, 73 (1998).

    Article  Google Scholar 

  5. C. Houngnlou, S. Chavaller, and J. P. Larpin, Applied Surface Science 236, 256 (2004).

    Article  Google Scholar 

  6. R. A. Mahesh, R. Jayaganthan, and S. Prakash, Surface Engineering 26, 413 (2010).

    Article  Google Scholar 

  7. R. S. Dutta, A. Arya, C. Yusufali, B. Vishwanadh, R. Tewari, and G. K. Dey, Surface and Coating Technolgy 235, 741 (2013).

    Article  Google Scholar 

  8. J. Xia, C. X. Li, and H. Dong, Wear 258, 1804 (2005).

    Article  Google Scholar 

  9. D. Li, Y. Xu, and D. Lin, Journal of Materials Science 36, 979 (2001).

    Article  Google Scholar 

  10. Z. D. Xiang, S. R. Rose, and P. K. Datta, Scripta Materialia 59, 99 (2008).

    Article  Google Scholar 

  11. H. Guoxin, X. Zhengxia, I. Jianju, and I. Yanhong, Surface and Coating Technolgy 203, 3392 (2009).

    Article  Google Scholar 

  12. M. A. Espinosa-Madina, G. Carbajal-Dela Torre, H. B. Liu, A. Martińez-Villafañe, and J. G. González-Rodriguez, Corrosion Science 51, 1420 (2009).

    Article  Google Scholar 

  13. S. Kamal, R. Jayaganthan, and S. Prakash, Surface Engineering 26, 453 (2010).

    Article  Google Scholar 

  14. J. Klöwer, U. Brill, and U. Heubner, Intermetallics 7, 1183 (1999).

    Article  Google Scholar 

  15. H. Cho and B. W. Lee, Modern Physics Letters B 29, 1 (2015).

    Article  Google Scholar 

  16. V. Chaturvedi, P. V. Ananthapadmanabhan, Y. Chakravarthy, S. Bhandari, N. Tiwari, A. Pragatheeswaran, and A. K. Das, Ceramics International 40, 8273 (2014).

    Article  Google Scholar 

  17. T. K. Thiyagarajan, P. V. Ananthapadmanabhan, K. P. Sreekumar, Y. Chakravarthy, A. K. Das, L. M. Gantayet, B. Selvan, and K. Ramachandran, Surface Engineering 28, 646 (2012).

    Article  Google Scholar 

  18. D. Thirumalaikumarasamy, K. Shanmugam, and V. Balasubramanian, Surface Engineering 28, 759 (2012).

    Article  Google Scholar 

  19. Q. Y. Chen, C. X. Li, J. Z. Zhao, G. J. Yang, and C. J. Li, Materials and Manufacturing Processes 31, 1183 (2016).

    Article  Google Scholar 

  20. E. M. Stanciu, A. Pascu, M. H. Ţierean, I. Voiculescu, I. C. Roată, C. Croitoru, and I. Hulka, Materials and Manufacturing Processes 31, 1556 (2016).

    Article  Google Scholar 

  21. M. R. Bateni, S. Shaw, P. Wei, and A. Petric, Materials and Manufacturing Processes 24, 626 (2009).

    Article  Google Scholar 

  22. K. Raj, K. K. Prasad, and N. K. Bansal, Nuclear Engineering Design 236, 914 (2006).

    Article  Google Scholar 

  23. R.S. Dutta, in Book Corrosion Research Trends, Chapter 11, ed. I.S. Wang (Nova Science Publishers, Inc. New York, 2007), p. 349.

  24. R. S. Dutta, C. Yusufali, B. Paul, S. Majumdar, P. Sengupta, R. K. Mishra, C. P. Kaushik, R. J. Khirsagar, U. D. Kulkarni, and G. K. Dey, Journal Nuclear Materials 432, 72 (2013).

    Article  Google Scholar 

  25. R.S. Dutta, S. Bhandari, Y. Chakravarthy, B. Vishwanadh, K. Singh, and G.K. Dey, in Materials Today: Proceedings (ARRMA 2016), vol. 3, ed. S. Majumdar (Elsevier 2016), p. 3018.

  26. S. Hofmann, Surface and Interface Analysis 2, 148 (1980).

    Article  Google Scholar 

  27. H. Viefhaus, K. Hennessen, M. Lucas, E. M. Müller-Lorenz, and H. J. Grabke, Surface and Interface Analysis 21, 665 (1994).

    Article  Google Scholar 

  28. M. P. Seah and T. S. Nnney, Journal of Physics D: Applied Physics 43, 253001 (2010).

    Article  Google Scholar 

  29. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, (Perkin-Elmer Corporation, Eden prairie, Minnesota, 1979).

    Google Scholar 

  30. R. S. Dutta, Jagannath, G. K. Dey, and P. K. De, Corrosion Science 48, 2711 (2006).

    Article  Google Scholar 

  31. R. S. Dutta, R. Purandare, A. Lobo, S. K. Kulkarni, and G. K. Dey, Corrosion Science 46, 2937 (2004).

    Article  Google Scholar 

  32. R. S. Dutta, A. Lobo, R. Purandare, S. K. Kulkarni, and G. K. Dey, Metallurgical and Materials Transactions A 33A, 1437 (2002).

    Article  Google Scholar 

  33. P. Marcus and J.-M. Herbalin, Corrosion Science 34, 1123 (1993).

    Article  Google Scholar 

  34. G. K. Dey, R. T. Savalia, S. K. Sharma, and S. K. Kulkarni, Corrosion Science 29, 823 (1989).

    Article  Google Scholar 

  35. P. Marcus and J. M. Grimal, Corrosion Science 33, 805 (1992).

    Article  Google Scholar 

  36. B. Stypula and J. Stoch, Corrosion Science 36, 2159 (1994).

    Article  Google Scholar 

  37. N. S. McIntyre, D. G. Zetaruk, and D. Owen, Journal of Electrochemical Society 126, 750 (1979).

    Article  Google Scholar 

  38. I. Olefjord, B. Brox, and U. Jelvestam, Journal of Electrochemical Society 132, 2854 (1985).

    Article  Google Scholar 

  39. P. Marcus and I. Olefjord, Corrosion 42, 91 (1986).

    Article  Google Scholar 

  40. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  Google Scholar 

  41. G. Liu, M. Li, M. Zhu, and Y. Zhou, Intermetallics 15, 1285 (2007).

    Article  Google Scholar 

  42. H. J. Choi, J. Jedlinski, B. Yao, and Y. H. Shon, Surface and Coating Technolgy 205, 1206 (2010).

    Article  Google Scholar 

  43. R. M. Jaeger, H. Kuhlenbeck, H.-J. Freund, M. Wittig, W. Hoffmann, R. Franchy, and H. Ibach, Surface Science 259, 235 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

The work has been funded by Department of Atomic Energy, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, R.S., Banerjee, R.H. & Dey, G.K. An XPS Study with Depth Profiling for the Surface Oxide Layer Formed on Aluminides Produced on Superalloy 690 Substrates. Oxid Met 89, 699–711 (2018). https://doi.org/10.1007/s11085-017-9813-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9813-6

Keywords

Navigation