Skip to main content
Log in

Firing pattern transition of fractional-order memristor-coupled Hindmarsh–Rose neurons model and its medical image encryption for region of interest

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a fractional-order memristor-coupled Hindmarsh–Rose neurons model, which the number and stability of equilibrium points are related to the coupling strength. By Lyapunov exponent spectrum, local attraction basins, spectral entropy and so on, firing pattern transition of the system is revealed. In order to deeply expose information transmission in neural networks, the bifurcation behavior of different neuronal orders is studied by three dimensional two-parameter bifurcation diagram. Furthermore, when external stimulus is applied to a neuron, the system produces anti-monotonicity and bursting behavior. A microcontroller based on ARM is used to implement the system and verify various firing activities. Finally, we use the properties of the chaotic system to design a medical image encryption algorithm based on the region of interest. Numerical simulation results demonstrate that the proposed algorithm can improve the security of medical image transmission and resource utilization. It provides strong resistance against attacks to ensure privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Wang, G.W., Yu, D., Ding, Q.M., Li, T.Y., Jia, Y.: Effects of electric field on multiple vibrational resonances in Hindmarsh–Rose neuronal systems. Chaos Solitons Fractals 150, 111210 (2021). https://doi.org/10.1016/j.chaos.2021.111210

    Article  MathSciNet  Google Scholar 

  2. Xu, Q., Chen, X.J., Chen, B., Wu, H.G., Li, Z., Bao, H.: Dynamical analysis of an improved FitzHugh–Nagumo neuron model with multiplier-free implementation. Nonlinear Dyn. 111(9), 8737–8749 (2023). https://doi.org/10.1007/s11071-023-08274-4

    Article  Google Scholar 

  3. Kusbeyzi Aybar, I.: Memristor-based oscillatory behavior in the FitzHugh–Nagumo and Hindmarsh–Rose models. Nonlinear Dyn. 103(3), 2917–2929 (2021). https://doi.org/10.1007/s11071-021-06231-7

    Article  Google Scholar 

  4. Joshi, S.K.: Synchronization of coupled Hindmarsh–Rose neuronal dynamics: analysis and experiments. IEEE Trans. Circuits Syst. II Express Briefs 69(3), 1737–1741 (2021). https://doi.org/10.1109/tcsii.2021.3106400

    Article  Google Scholar 

  5. Bao, H., Zhu, D., Liu, W., Xu, Q., Bao, B.: Memristor synapse-based Morris–Lecar model: Bifurcation analyses and FPGA-based validations for periodic and chaotic bursting/spiking firings. Int. J. Bifurc. Chaos 30(3), 2050045 (2020). https://doi.org/10.1142/S0218127420500455

    Article  MathSciNet  Google Scholar 

  6. Rajagopal, K., Karthikeyan, A., Srinivasan, A.: Dynamical analysis and FPGA implementation of a chaotic oscillator with fractional-order memristor components. Nonlinear Dyn. 91(3), 1491–1512 (2018). https://doi.org/10.1007/s11071-017-3960-9

    Article  Google Scholar 

  7. Chen, L., Zhou, W.H., Li, C.D., Huang, J.J.: Forgetting memristors and memristor bridge synapses with long- and short-term memories. Neurocomputing 456, 126–135 (2021). https://doi.org/10.1016/j.neucom.2021.05.062

    Article  Google Scholar 

  8. Li, C.L., Wang, X., Du, J.R., Li, Z.J.: Electrical activity and synchronization of HR-Tabu neuron network coupled by Chua Corsage Memristor. Nonlinear Dyn. 111(22), 21333–21350 (2023). https://doi.org/10.1007/s11071-023-08998-3

    Article  Google Scholar 

  9. Ge, M.Y., Jia, Y., Xu, Y., Yang, L.J.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91(1), 515–523 (2018). https://doi.org/10.1007/s11071-017-3886-2

    Article  Google Scholar 

  10. Li, Z.J., Zhou, H.Y., Wang, M.J., Ma, M.L.: Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with HR and FN models. Nonlinear Dyn. 104(2), 1455–1473 (2021). https://doi.org/10.1007/s11071-021-06315-4

    Article  Google Scholar 

  11. Hua, M.J., Zhang, Y.Z., Chen, M., Xu, Q., Bao, B.C.: Memristive single-neuron model and its memristor-coupled network: homogenously coexisting attractors and parallel-offset synchronization. Int. J. Bifurc. Chaos 32(15), 2250225 (2022). https://doi.org/10.1142/S021812742250225X

    Article  MathSciNet  Google Scholar 

  12. Bao, B.C., Yang, Q.F., Zhu, D., Zhang, Y.Z., Xu, Q., Chen, M.: Initial-induced coexisting and synchronous firing activities in memristor synapse-coupled Morris–Lecar bi-neuron network. Nonlinear Dyn. 99, 2339–2354 (2020). https://doi.org/10.1007/s11071-019-05395-7

    Article  Google Scholar 

  13. Ding, D.W., Chen, X.Y., Yang, Z.L., Hu, Y.B., Wang, M.Y., Niu, Y.: Dynamics of stimuli-based fractional-order memristor-coupled Tabu learning two-neuron model and its engineering applications. Nonlinear Dyn. 111(2), 1791–1817 (2023). https://doi.org/10.1007/s11071-022-07886-6

    Article  Google Scholar 

  14. Fossi, J.T., Edima, H.C., Njitacke, Z.T., Kemwoue, F.F., Mendimi, J.M., Atangana, J.: Coexistence of attractors and its control with selection of a desired attractor in a model of extended Hindmarsh–Rose neuron with nonlinear smooth fitting function: microcontroller implementation. J. Vib. Eng. Technol. 10(7), 2751–2764 (2022). https://doi.org/10.1007/s42417-022-00518-8

    Article  Google Scholar 

  15. Lin, H.R., Wang, C.H., Sun, Y.C., Yao, W.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100(4), 3667–3683 (2020). https://doi.org/10.1007/s11071-020-05687-3

    Article  Google Scholar 

  16. Njitacke, Z.T., Takembo, C.N., Koumetio, B.N., Awrejcewicz, J.: Complex dynamics and autapse-modulated information patterns in memristive Wilson neurons. Nonlinear Dyn. 110(3), 2793–2804 (2022). https://doi.org/10.1007/s11071-022-07738-3

    Article  Google Scholar 

  17. Semenov, D.M., Fradkov, A.L.: Adaptive synchronization in the complex heterogeneous networks of Hindmarsh–Rose neurons. Chaos Solitons Fractals 150, 111170 (2021). https://doi.org/10.1016/j.chaos.2021.111170

    Article  MathSciNet  Google Scholar 

  18. Wang, W.Y., Wang, G.Y., Ying, J.J., Liu, G.Z., Liang, Y.: Dynamics of a fractional-order voltage-controlled locally active memristor. Pramana 96(2), 109 (2022). https://doi.org/10.1007/s12043-022-02354-7

    Article  Google Scholar 

  19. Yang, X.J., Li, C.D., Huang, T.W., Song, Q.K., Huang, J.J.: Synchronization of fractional-order memristor-based complex-valued neural networks with uncertain parameters and time delays. Chaos Solitons Fractals 110, 105–123 (2018). https://doi.org/10.1016/j.chaos.2018.03.016

    Article  MathSciNet  Google Scholar 

  20. Drapaca, C.S., Sivaloganathan, S.: A fractional model of continuum mechanics. J. Elast. 107(2), 105–123 (2012). https://doi.org/10.1007/s10659-011-9346-1

    Article  MathSciNet  Google Scholar 

  21. Ni, J.K., Liu, L., Liu, C.X., Hu, X.Y.: Fractional order fixed-time nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems. Nonlinear Dyn. 89(3), 2065–2083 (2017). https://doi.org/10.1007/s11071-017-3570-6

    Article  MathSciNet  Google Scholar 

  22. Qiao, Z.J., Elhattab, A., Shu, X.D., He, C.B.: A second-order stochastic resonance method enhanced by fractional-order derivative for mechanical fault detection. Nonlinear Dyn. 106(1), 707–723 (2021). https://doi.org/10.1007/s11071-021-06857-7

    Article  Google Scholar 

  23. Rajagopal, K., Hasanzadeh, N., Parastesh, F., Hamarash, I.I., Jafari, S., Hussain, I.: A fractional-order model for the novel coronavirus (COVID-19) outbreak. Nonlinear Dyn. 101(1), 711–718 (2020). https://doi.org/10.1007/s11071-020-05757-6

    Article  Google Scholar 

  24. Yu, Y.J., Shi, M., Kang, H.Y., Chen, M., Bao, B.C.: Hidden dynamics in a fractional-order memristive Hindmarsh–Rose model. Nonlinear Dyn. 100, 891–906 (2020). https://doi.org/10.1007/s11071-020-05495-9

    Article  Google Scholar 

  25. Xu, S.C., Wang, X.Y., Ye, X.L.: A new fractional-order chaos system of Hopfield neural network and its application in image encryption. Chaos Solitons Fractals 157, 111889 (2022). https://doi.org/10.1016/j.chaos.2022.111889

    Article  MathSciNet  Google Scholar 

  26. Lu, Y.M., Wang, C.H., Deng, Q.L., Xu, C.: The dynamics of a memristor-based Rulkov neuron with fractional-order difference. Chin. Phys. B 31(6), 60502 (2022). https://doi.org/10.1088/1674-1056/ac539a

    Article  Google Scholar 

  27. Huang, X., Jia, J., Li, Y.X., Wang, Z.: Complex nonlinear dynamics in fractional and integer order memristor-based systems. Neurocomputing 218, 296–306 (2016). https://doi.org/10.1016/j.neucom.2016.08.078

  28. Rani, N., Sharma, S.R., Mishra, V.: Grayscale and colored image encryption model using a novel fused magic cube. Nonlinear Dyn. 108(2), 1773–1796 (2022). https://doi.org/10.1007/s11071-022-07276-y

    Article  Google Scholar 

  29. Ding, Y., Wu, G.Z., Chen, D.J., Zhang, N., Gong, L.P., Cao, M.S., Qin, Z.G.: DeepEDN: a deep-learning-based image encryption and decryption network for internet of medical things. IEEE Internet Things J. 8(3), 1504–1518 (2020). https://doi.org/10.1109/JIOT.2020.3012452

  30. Gao, X.Y., Sun, B., Cao, Y.H., Banerjee, S., Mou, J.: A color image encryption algorithm based on hyperchaotic map and DNA mutation. Chin. Phys. B 32(3), 030501 (2023). https://doi.org/10.1088/1674-1056/ac8cdf

    Article  Google Scholar 

  31. Kayani, M., Mohsin Riaz, M., Ghafoor, A.: Efficient region of interest encryption based on a new chaotic map. Int. J. Bifurc. Chaos 32(12), 2250175 (2022). https://doi.org/10.1142/s0218127422501759

    Article  MathSciNet  Google Scholar 

  32. Chang, R.Y., Feng, X.F., Zhang, H., Yan, P.F.: A robust privacy protection scheme for stereoscopic medical images based on fractal chaos. Nonlinear Dyn. 111(20), 19425–19445 (2023). https://doi.org/10.1007/s11071-023-08900-1

    Article  Google Scholar 

  33. Chen, R., Li, X.M., Teng, L., Wang, X.Y.: Selective region medical image encryption algorithm based on cascade chaos and two-dimensional Joseph traversal. Phys. Scr. 98(3), 035227 (2023). https://doi.org/10.1088/1402-4896/acbcf8

    Article  Google Scholar 

  34. Meng, X., Li, J.Q., Di, X.Q., Sheng, Y.H., Jiang, D.H.: An encryption algorithm for region of interest in medical DICOM based on one-dimensional e\(\lambda \)-cos-cot map. Entropy 24(7), 901 (2022). https://doi.org/10.3390/e24070901

  35. Zhang, B., Rahmatullah, B., Wang, S.L., Almutairi, H.M., Xiao, Y., Liu, X.J., Liu, Z.Y.: A variable dimensional chaotic map-based medical image encryption algorithm with multi-mode. Med. Biol. Eng. Comput. 61(11), 2971–3002 (2023). https://doi.org/10.1007/s11517-023-02874-3

    Article  Google Scholar 

  36. Shen, M., Lei, Z.K.: Optical selective encryption based on the FRFCM algorithm and face biometric for the medical image. Opt. Laser Technol. 138, 106911 (2021). https://doi.org/10.1016/j.optlastec.2020.106911

    Article  Google Scholar 

  37. Ding, D.W., Jiang, L., Hu, Y.B., Li, Q., Yang, Z.L., Zhang, Z.X., Wu, Q.J.: Hidden dynamical behaviors, sliding mode control and circuit implementation of fractional-order memristive Hindmarsh–Rose neuron model. Eur. Phys. J. Plus 136(5), 521 (2021). https://doi.org/10.1140/epjp/s13360-021-01107-6

    Article  Google Scholar 

  38. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952). https://doi.org/10.1113/jphysiol.1952.sp004764

    Article  Google Scholar 

  39. Ye, X.L., Mou, J., Luo, C.F., Yang, F.F., Cao, Y.H.: Complexity analysis of a mixed memristive chaotic circuit. Complexity (2018). https://doi.org/10.1155/2018/8639470

    Article  Google Scholar 

  40. Ma, C.G., Mou, J., Xiong, L., Banerjee, S., Liu, T.M., Han, X.T.: Dynamical analysis of a new chaotic system: asymmetric multistability, offset boosting control and circuit realization. Nonlinear Dyn. 103(3), 2867–2880 (2021). https://doi.org/10.1007/s11071-021-06276-8

    Article  Google Scholar 

  41. De Sarkar, S.S., Sharma, A.K., Chakraborty, S.: Chaos, antimonotonicity and coexisting attractors in Van der Pol oscillator based electronic circuit. Analog Integr. Circ. Sig. Process 110(2), 211–229 (2022). https://doi.org/10.1007/s10470-021-01934-8

    Article  Google Scholar 

  42. Xie, W.L., Wang, C.H., Lin, H.R.: A fractional-order multistable locally active memristor and its chaotic system with transient transition, state jump. Nonlinear Dyn. 104(4), 4523–4541 (2021). https://doi.org/10.1007/s11071-021-06476-2

    Article  Google Scholar 

  43. Xu, Q., Tan, X., Zhu, D., Bao, H., Hu, Y.H., Bao, B.C.: Bifurcations to bursting and spiking in the Chay neuron and their validation in a digital circuit. Chaos Solitons Fractals 141, 110353 (2020). https://doi.org/10.1016/j.chaos.2020.110353

    Article  MathSciNet  Google Scholar 

  44. Sun, J.W., Yan, Y.L., Wang, Y.F., Fang, J.: Dynamical analysis of HR-FN neuron model coupled by locally active hyperbolic memristor and DNA sequence encryption application. Nonlinear Dyn. 111(4), 3811–3829 (2023). https://doi.org/10.1007/s11071-022-08027-9

    Article  Google Scholar 

  45. Zheng, J.M., Bao, T.Y.: An image encryption algorithm based on cascade chaotic map and DNA coding. IET Image Proc. 17(12), 3510–3523 (2023). https://doi.org/10.1049/ipr2.12882

    Article  Google Scholar 

  46. Hussain, M., Iqbal, N., Bashir, Z.: A chaotic image encryption scheme based on multi-directional confusion and diffusion operations. J. Inf. Secur. Appl. 70, 103347 (2022). https://doi.org/10.1016/j.jisa.2022.103347

  47. Wang, X.Y., Chen, S.N., Zhang, Y.Q.: A chaotic image encryption algorithm based on random dynamic mixing. Opt. Laser Technol. 138, 106837 (2021). https://doi.org/10.1016/j.optlastec.2020.106837

    Article  Google Scholar 

  48. Liu, L.D., Lei, Y.H., Wang, D.: A fast chaotic image encryption scheme with simultaneous permutation-diffusion operation. IEEE Access 8, 27361–27374 (2020). https://doi.org/10.1109/access.2020.2971759

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Chen, S., Zhang, H. et al. Firing pattern transition of fractional-order memristor-coupled Hindmarsh–Rose neurons model and its medical image encryption for region of interest. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09593-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09593-w

Keywords

Navigation