Skip to main content
Log in

Grayscale and colored image encryption model using a novel fused magic cube

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel method for the construction of a fused magic cube of composite order has been proposed by using the concept of compounding. The replacement of each block magic cube with its magic constant introduces the structural flexibility in the fused magic cube by allowing the variation in its order. Additionally, the properties of pseudo-randomness, the larger key space size, and structural complexity of the fused magic cube rejuvenate toward its application to the field of image encryption. The utilization of the fused magic cube in both confusion and diffusion phases of the proposed image encryption model eliminates the need of any additional component. The use of fused magic cube in the proposed encryption model enhances the security as its elements are not consecutively ranging from 1 to \(n^3\) unlike the elements of a natural magic cube of order n. Moreover, the layer shuffling in the fused magic cube has been used to raise the level of randomness in the encryption. The proposed model works on both grayscale as well as colored images of different resolutions and file formats. The experimental and security analyses validate the efficiency and reliability of the proposed model. The use of fused magic cube opens up the new direction for image encryption. The proposed model has also been applied to the medical images to guarantee the security of medical data in the telemedicine technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The data that support the findings of the study are available in USC-SIPI [http://sipi.usc.edu/database], https://www.pathologyoutlines.com, https://www.kaggle.com, and ISIC 2018 database.

References

  1. Alspach, B., Heinrich, K.: Perfect magic cubes of order 4m. Fibonacci Quarterly 19, 97–106 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Andrews, W.: Magic squares and cubes. Bull. Am. Math. Soc. 16, 85–87 (1909). https://doi.org/10.1090/S0002-9904-1909-01866-X

    Article  MathSciNet  Google Scholar 

  3. Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., Marchetti, M., Kittler, H., Halpern, A.: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). (2019) 1902.03368

  4. Dawood, O.A., Rahma, A.M.S., Hossen, A.M.J.A.: Generalized method for constructing magic cube by folded magic squares. In. J. Intell. Syst. Appl. 8(1), 1–8 (2016). https://doi.org/10.5815/ijisa.2016.01.01

    Article  Google Scholar 

  5. Deb, S., Biswas, B., Bhuyan, B.: Secure image encryption scheme using high efficiency word-oriented feedback shift register over finite field. Multimedia Tools Appl 78(24), 34901–34925 (2019). https://doi.org/10.1007/s11042-019-08086-y

    Article  Google Scholar 

  6. Delfs, H., Knebl, H., Knebl, H.: Introduction to Cryptography, vol. 2. Springer, Berlin (2002). https://doi.org/10.1007/978-3-662-47974-2

    Book  MATH  Google Scholar 

  7. Diaconu, A.V., Loukhaoukha, K.: An improved secure image encryption algorithm based on Rubik’s cube principle and digital chaotic cipher. Math. Problems Eng. 2013, 1–10 (2013). https://doi.org/10.1155/2013/848392

    Article  MathSciNet  Google Scholar 

  8. Farhan, A.S., Abed, S.H., Awad, F.H.: Color image encryption with a key generated by using magic square. J. Eng. Appl. Sci. 13(8), 2038–2041 (2018). https://doi.org/10.36478/jeasci.2018.2038.2041

    Article  Google Scholar 

  9. Feng, X., Tian, X., Xia, S.: An improved image scrambling algorithm based on magic cube rotation and chaotic sequences. In: 2011 4th International Congress on Image and Signal Processing, IEEE, Shanghai, China, vol. 2, pp 1021–1024, (2011) https://doi.org/10.1109/CISP.2011.6100274

  10. Feng, X., Tian, X., Xia, S.: A novel image encryption algorithm based on fractional Fourier transform and magic cube rotation. In: 2011 4th International Congress on Image and Signal Processing, IEEE, vol 2, pp. 1008–1011, (2011) https://doi.org/10.1109/CISP.2011.6100319

  11. Gaffar, A.F.O., Malani, R., Putra, A.B.W.: Magic cube puzzle approach for image encryption. Int. J. Adv. Intell. Inf. 6(3), 290–302 (2020). https://doi.org/10.26555/ijain.v6i3.422

    Article  Google Scholar 

  12. Guesmi, R., Farah, M.B.: A new efficient medical image cipher based on hybrid chaotic map and dna code. Multimedia Tools Appl. 80(2), 1925–1944 (2021). https://doi.org/10.1007/s11042-020-09672-1

    Article  Google Scholar 

  13. Herzog, A., Shahmehri, N., Duma, C.: An ontology of information security. Int. J. Inf. Security Privacy (IJISP) 1(4), 1–23 (2007). https://doi.org/10.4018/jisp.2007100101

    Article  Google Scholar 

  14. Hore A, Ziou D (2010) Image quality metrics: Psnr vs. ssim. In: 2010 20th international conference on pattern recognition, IEEE, pp. 2366–2369, https://doi.org/10.1109/ICPR.2010.579

  15. Hu, G., Li, B.: Coupling chaotic system based on unit transform and its applications in image encryption. Signal Process. 178(107790), 1–17 (2021). https://doi.org/10.1016/j.sigpro.2020.107790

    Article  Google Scholar 

  16. Ibrahim, D.R., Abdullah, R., Teh, J.S.: An enhanced color visual cryptography scheme based on the binary dragonfly algorithm. International Journal of Computers and Applications pp. 1–10, (2020) https://doi.org/10.1080/1206212X.2020.1859244

  17. Kamrani, A., Zenkouar, K., Najah, S.: A new set of image encryption algorithms based on discrete orthogonal moments and chaos theory. Multimedia Tools Appl. 79(27), 20263–20279 (2020). https://doi.org/10.1007/s11042-020-08879-6

    Article  Google Scholar 

  18. Kari, A.P., Navin, A.H., Bidgoli, A.M., Mirnia, M.: A new image encryption scheme based on hybrid chaotic maps. Multimedia Tools Appl. 80(2), 2753–2772 (2021). https://doi.org/10.1007/s11042-020-09648-1

    Article  Google Scholar 

  19. Kester, Q.A., Nana, L., Pascu, A.C., Gire, S., Eghan, J.M., Quaynor, N.N.: A cryptographic technique for security of medical images in health information systems. Procedia Computer Sci. 58, 538–543 (2015). https://doi.org/10.1016/j.procs.2015.08.070

    Article  Google Scholar 

  20. Kumar, M., Powduri, P., Reddy, A.: An rgb image encryption using diffusion process associated with chaotic map. J. Inf. Security Appl. 21, 20–30 (2015). https://doi.org/10.1016/j.jisa.2014.11.003

    Article  Google Scholar 

  21. Li, Z., Peng, C., Tan, W., Li, L.: A novel chaos-based image encryption scheme by using randomly dna encode and plaintext related permutation. Appl. Sci. 10(7469), 1–18 (2020). https://doi.org/10.3390/app10217469

    Article  Google Scholar 

  22. Lin, K.Y.: Magic cubes and hypercubes of order 3. Discrete Math. 58(2), 159–166 (1986). https://doi.org/10.1016/0012-365X(86)90158-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, H., Wang, X., Kadir, A.: Image encryption using dna complementary rule and chaotic maps. Appl. Soft Comput. 12(5), 1457–1466 (2012). https://doi.org/10.1016/j.asoc.2012.01.016

    Article  Google Scholar 

  24. Liu, Y., Zhang, J., Han, D., Wu, P., Sun, Y., Moon, Y.S.: A multidimensional chaotic image encryption algorithm based on the region of interest. Multimedia Tools Appl. 79, 17669–17705 (2020). https://doi.org/10.1007/s11042-020-08645-8

    Article  Google Scholar 

  25. Loukhaoukha, K., Chouinard, J.Y., Berdai, A.: A secure image encryption algorithm based on Rubik’s cube principle. J. Electr. Computer Eng. 2012, 1–13 (2012). https://doi.org/10.1155/2012/173931

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo, Y., Tang, S., Qin, X., Cao, L., Jiang, F., Liu, J.: A double-image encryption scheme based on amplitude-phase encoding and discrete complex random transformation. IEEE Access 6, 77740–77753 (2018). https://doi.org/10.1109/ACCESS.2018.2884013

    Article  Google Scholar 

  27. Mansouri, A., Wang, X.: A novel block-based image encryption scheme using a new sine powered chaotic map generator. Multimedia Tools Appl. 80(14), 21955–21978 (2021). https://doi.org/10.1007/s11042-021-10757-8

    Article  Google Scholar 

  28. Mazher, A.N., Waleed, J.: Implementation of modified gso based magic cube keys generation in cryptography. Eastern-Euro. J. Enterprise Technol. 1(9), 43–49 (2021). https://doi.org/10.15587/1729-4061.2021.225508

    Article  Google Scholar 

  29. Mazloom, S., Eftekhari-Moghadam, A.M.: Color image encryption based on coupled nonlinear chaotic map. Chaos Solitons Fractals 42(3), 1745–1754 (2009). https://doi.org/10.1016/j.chaos.2009.03.084

    Article  MATH  Google Scholar 

  30. Mirzaei, O., Yaghoobi, M., Irani, H.: A new image encryption method: parallel sub-image encryption with hyper chaos. Nonlinear Dyn. 67(1), 557–566 (2012). https://doi.org/10.1007/s11071-011-0006-6

    Article  MathSciNet  Google Scholar 

  31. Mushtaq, M.F., Jamel, S., Radhiah, S., Akram, U., Mat, M.: Key schedule algorithm using 3-dimensional hybrid cubes for block cipher. Int. J. Adv. Comput. Sci. Appl. 10(8), 427–442 (2019). https://doi.org/10.14569/IJACSA.2019.0100857

    Article  Google Scholar 

  32. Pappachan, J., Baby, J.: Tinkerbell maps based image encryption using magic square. Int. J. Adv. Res. Electr. Electr. Instr. Eng. (IJAREEIE) 4, 6226–6232 (2015). https://doi.org/10.15662/ijareeie.2015.0407034

    Article  Google Scholar 

  33. Patro, K.A.K., Acharya, B.: An efficient dual-layer cross-coupled chaotic map security-based multi-image encryption system. Nonlinear Dyn. 104, 2759–2805 (2021). https://doi.org/10.1007/s11071-021-06409-z

    Article  Google Scholar 

  34. Perednia, D.A., Allen, A.: Telemedicine technology and clinical applications. Jama 273(6), 483–488 (1995). https://doi.org/10.1001/jama.1995.03520300057037

    Article  Google Scholar 

  35. Rageed, H.A.H., Sadiq, A.M.: A new algorithm based on magic square and a novel chaotic system for image encryption. J. Intell. Syst. 29(1), 1202–1215 (2020). https://doi.org/10.1515/jisys-2018-0404

    Article  Google Scholar 

  36. Rogers, A., Loly, P.: The inertia tensor of a magic cube. Am. J. Phys. 72(6), 786–789 (2004). https://doi.org/10.1119/1.1701845

    Article  Google Scholar 

  37. Shuangyuan, Y., Zhengding, L., Shuihua, H.: An asymmetric image encryption based on matrix transformation. In: IEEE International Symposium on Communications and Information Technology, 2004. ISCIT 2004., IEEE, Sapporo, Japan, vol. 1, pp. 66–69, (2004) https://doi.org/10.1109/ISCIT.2004.1412451

  38. Sneha, P., Sankar, S., Kumar, A.S.: A chaotic colour image encryption scheme combining Walsh-Hadamard transform and Arnold-tent maps. J. Ambient Intell. Humanized Comput. 11(3), 1289–1308 (2020). https://doi.org/10.1007/s12652-019-01385-0

    Article  Google Scholar 

  39. Somaraj, S., Hussain, M.A.: Performance and security analysis for image encryption using key image. Indian J. Sci. Technol. 8(35), 1–4 (2015). https://doi.org/10.17485/ijst/2015/v8i35/73141

    Article  Google Scholar 

  40. Sowmiya, S., Tresa, I.M., Chakkaravarthy, A.P.: Pixel based image encryption using magic square. In: 2017 International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET), IEEE, Chennai, India, pp. 1–4, (2017) https://doi.org/10.1109/ICAMMAET.2017.8186634

  41. Tedmori, S., Al-Najdawi, N.: Image cryptographic algorithm based on the Haar wavelet transform. Inf. Sci. 269, 21–34 (2014). https://doi.org/10.1016/j.ins.2014.02.004

    Article  MathSciNet  MATH  Google Scholar 

  42. Telem, A.N.K., Fotsin, H.B., Kengne, J.: Image encryption algorithm based on dynamic dna coding operations and 3d chaotic systems. Multimedia Tools Appl. 80(12), 19011–19041 (2021). https://doi.org/10.1007/s11042-021-10549-0

    Article  Google Scholar 

  43. Trenkler, M.: A construction of magic cubes. Math. Gazette 84(499), 36–41 (2000). https://doi.org/10.2307/3621472

    Article  Google Scholar 

  44. Trenkler, M.: An algorithm for making magic cubes. The \(\pi \) ME J. 12(2), 105–106 (2005)

  45. Trenkler, M.: On additive and multiplicative magic cubes. Jan Długosz University of Częstochowa, Scientific Issues, Mathematics XIII, Częstochowa pp. 67–72 (2008)

  46. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. (2018) https://doi.org/10.1038/sdata.2018.161

  47. Uko, L.U., Barron, T.L.: A generalization of Trenkler’s magic cubes formula. Recreat. Math. Magazine 12(8), 39–45 (2017). https://doi.org/10.1515/rmm-2017-0019

    Article  MathSciNet  Google Scholar 

  48. Wang, M., Yang, W.F., Xiong, X.W.: Application of information hiding technology based on matlab in military information security. In: Advanced Materials Research, Trans Tech Publ, vol. 546, pp. 395–400, (2012) https://doi.org/10.4028/www.scientific.net/AMR.546-547.395

  49. Wang, X., Wang, Y., Zhu, X., Luo, C.: A novel chaotic algorithm for image encryption utilizing one-time pad based on pixel level and dna level. Optics Lasers Eng. 125(105851), 1–12 (2020). https://doi.org/10.1016/j.optlaseng.2019.105851

    Article  Google Scholar 

  50. Weber, G.: Usc-sipi image database: Version 4. dept elect eng-syst, Univ Southern California, Los Angeles, ca. Tech. rep., USA, Tech Rep 244, (1993) http://sipi.usc.edu/database

  51. Wootton, R.: Telemedicine. Bmj 323(7312), 557–560 (2001). https://doi.org/10.1136/bmj.323.7312.557

  52. Wu, J., Liu, Z., Wang, J., Hu, L., Liu, S.: A compact image encryption system based on Arnold transformation. Multimedia Tools Appl. 80(2), 2647–2661 (2021). https://doi.org/10.1007/s11042-020-09828-z

    Article  Google Scholar 

  53. Xu, L., Gou, X., Li, Z., Li, J.: A novel chaotic image encryption algorithm using block scrambling and dynamic index based diffusion. Optics Lasers Eng. 91, 41–52 (2017). https://doi.org/10.1016/j.optlaseng.2016.10.012

    Article  Google Scholar 

  54. Yan, X., Wang, X., Xian, Y.: Chaotic image encryption algorithm based on arithmetic sequence scrambling model and dna encoding operation. Multimedia Tools Appl. 80(7), 10949–10983 (2021). https://doi.org/10.1007/s11042-020-10218-8

    Article  Google Scholar 

  55. Yasser, I., Khalifa, F., Mohamed, M.A., Samrah, A.S.: A new image encryption scheme based on hybrid chaotic maps. Complexity 2020, 1–23 (2020). https://doi.org/10.1155/2020/9597619

    Article  Google Scholar 

  56. Yu, W., Liu, Y., Gong, L., Tian, M., Tu, L.: Double-image encryption based on spatiotemporal chaos and dna operations. Multimedia Tools Appl. 78(14), 20037–20064 (2019). https://doi.org/10.1007/s11042-018-7110-2

  57. Zhang, F., Liao, X., Zhang, G.: Some new results for the generalized Lorenz system. Qualitative Theory Dyn. Syst. 16(3), 749–759 (2017). https://doi.org/10.1007/s12346-016-0206-z

  58. Zhang, F., Liao, X., Zhang, G., Mu, C., Xiao, M., Zhou, P.: Dynamical behaviors of a generalized Lorenz family. Discrete Continuous Dyn. Syst. B 22(10), 3707–3720 (2017). https://doi.org/10.3934/dcdsb.2017184

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhang, Q., Han, J.: A novel color image encryption algorithm based on image hashing, 6d hyperchaotic and dna coding. Multimedia Tools Appl. 80(9), 13841–13864 (2021). https://doi.org/10.1007/s11042-020-10437-z

    Article  Google Scholar 

  60. Zhong, W., Deng, Y.H., Fang, K.T.: Image encryption by using magic squares. In: 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), IEEE, pp 771–775, (2016) https://doi.org/10.1109/CISP-BMEI.2016.7852813

  61. Zhou, P., Ma, J., Tang, J.: Clarify the physical process for fractional dynamical systems. Nonlinear Dyn. 100(3), 2353–2364 (2020). https://doi.org/10.1007/s11071-020-05637-z

  62. Zhu, Z.l., Wang, C., Chai, H., Yu, H.: A chaotic image encryption scheme based on magic cube transformation. In: 2011 Fourth International Workshop on Chaos-Fractals Theories and Applications, IEEE, Hangzhou, China, pp. 214–218, (2011) https://doi.org/10.1109/IWCFTA.2011.75

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, N., Sharma, S.R. & Mishra, V. Grayscale and colored image encryption model using a novel fused magic cube. Nonlinear Dyn 108, 1773–1796 (2022). https://doi.org/10.1007/s11071-022-07276-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07276-y

Keywords

Navigation