Skip to main content
Log in

Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Hindmarsh–Rose (HR) neuron model has been improved to investigate the complex electrophysiological and various physical phenomena at the level of single cell, for example, time-varying action potential can be induced by the exchange of ion currents and the fluctuation of ions concentration in the cell. When the magnetic flux is considered as a new variable associated to magnetic field, the improved HR neuron model can describe the effects of electromagnetic induction and radiation on membrane potential, where a memristor is used to bridge the membrane potential and the magnetic flux. In this paper, considering the magnetic flux driven, respectively, by the periodic high and low frequency electromagnetic radiation and the Gaussian white noise, the improved HR neuron model is employed to study the modes transition in electrical activities of neuron. The thought-provoking phenomena are detected and discussed by using bifurcation analysis on sampled time series of membrane potential. It is found that the electrical modes of HR neuron model under various parameters have different responses to the periodic high–low frequency electromagnetic radiation and the Gaussian white noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116, 449–472 (1952)

    Article  Google Scholar 

  2. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  3. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  4. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)

    Article  Google Scholar 

  5. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B. Biol. Sci. 221, 87–102 (1984)

    Article  Google Scholar 

  6. Burkitt, A.N.: A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern. 95, 1–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burkitt, A.N.: A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol. Cybern. 95, 97–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Laing, C.R., Chow, C.C.: A spiking neuron model for binocular rivalry. J. Comput. Neurosci. 12, 39–53 (2002)

    Article  Google Scholar 

  9. Achard, P., Schutter, E.D.: Complex parameter landscape for a complex neuron model. PLoS Comput. Biol. 2, 0794–0804 (2006)

    Article  Google Scholar 

  10. Tsumoto, K., Yoshinaga, T., Aihara, K., Kawakami, H., et al.: Bifurcations in Morris–Lecar neuron model. Neurocomputing 69, 293–316 (2006)

    Article  Google Scholar 

  11. Gu, H.G., et al.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78, 391–407 (2014)

    Article  MathSciNet  Google Scholar 

  12. Gu, H.G., Pan, B.B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81, 2107–2126 (2015)

    Article  MathSciNet  Google Scholar 

  13. Storace, M., Linaro, D., de Lange, E.: The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18, 033128 (2008)

    Article  MathSciNet  Google Scholar 

  14. Gu, H.G.: Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker. Chaos 23, 023126 (2013)

    Article  Google Scholar 

  15. Jia, B., Gu, H.G., Xue, L.: A basic bifurcation structure from bursting to spiking of injured nerve fibers in a two-dimensional parameter space. Cogn. Neurodyn. 11, 1–12 (2017)

    Article  Google Scholar 

  16. Zhao, Z.G., Gu, H.G.: Transitions between classes of neuronal excitability and bifurcations induced by autapse. Sci. Rep. 7, 6760 (2017)

    Article  Google Scholar 

  17. Yu, L.C., Chen, Y., Zhang, P.: Frequency and phase synchronization of two coupled neurons with channel noise. Eur. Phys. J. B 59, 249 (2007)

    Article  Google Scholar 

  18. Wang, H.T., Wang, L.F., Yu, L.C., et al.: Response of Morris–Lecar neurons to various stimuli. Phys. Rev. E 83, 021915 (2011)

    Article  Google Scholar 

  19. Chen, Y., Yu, L.C., Qin, S.M.: Detection of subthreshold pulses in neurons with channel noise. Phys. Rev. E 78, 051909 (2008)

    Article  Google Scholar 

  20. Yang, L.J., Liu, W.H., Yi, M., Wang, C., Zhu, Q., Zhan, X., Jia, Y.: Vibrational resonance induced by transition of phase-locking modes in excitable system. Phys. Rev. E 86, 016209 (2012)

    Article  Google Scholar 

  21. Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviours. Electron. Lett. 46, 237–238 (2010)

    Google Scholar 

  22. Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20, 1335–1350 (2010)

    Article  MATH  Google Scholar 

  23. Pinto, R.D., Varona, P., Volkovskii, A.R., et al.: Synchronous behavior of two coupled electronic neurons. Phys. Rev. E 62, 2644 (2000)

    Article  Google Scholar 

  24. Selverston, A., Rabinovich, M., Abarbanel, H.D., et al.: Reliable circuits for irregular neurons: a dynamical approach to understanding central pattern generators. J. Physiol. 94, 357–374 (2000)

    Google Scholar 

  25. Wu, X.Y., Ma, J., Yuan, L.H., et al.: Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn. 75, 113–126 (2014)

    Article  MathSciNet  Google Scholar 

  26. Herrmann, C.S., Klaus, A.: Autapse turns neuron into oscillator. Int. J. Bifurcat. Chaos 14, 623–633 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Y.Y., Schmid, G., Hänggi, P., et al.: Spontaneous spiking in an autaptic Hodgkin–Huxley set up. Phys. Rev. E 82, 061907 (2012)

    Article  Google Scholar 

  28. Ren, G.D., Wu, G., Ma, J., et al.: Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse. Acta Phys. Sin. 64, 058702 (2015)

    Google Scholar 

  29. Song, X.L., Wang, C.N., Ma, J., et al.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58, 1007–1014 (2015)

    Article  Google Scholar 

  30. Xu, Y., Ying, H., Jia, Y., et al.: Autaptic regulation of electrical activities in neuron under electromagnetic. Sci. Rep. 7, 43452 (2017)

    Article  Google Scholar 

  31. Guo, S.L., Tang, J., Ma, J., et al.: Autaptic modulation of electrical activity in a network of neuron-coupled astrocyte. Complexity 2017, 1–13 (2017). https://doi.org/10.1155/2017/4631602

  32. Wang, C.N., Guo, S.L., Xu, Y., et al.: Formation of autapse connected to neuron and its biological function. Complexity 2017, 1–9 (2017). https://doi.org/10.1155/2017/5436737

  33. Ma, J., Song, X.L., Tang, J., et al.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Article  Google Scholar 

  34. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)

    Article  Google Scholar 

  35. Harris, J.J., Jolivet, R., Attwell, D.: Synaptic energy use and supply. Neuron 75, 762–77 (2012)

    Article  Google Scholar 

  36. Wang, R.B., Zhang, Z.K., Chen, G.R.: Energy coding and energy functions for local activities of the brain. Neurocomputing 73, 139–150 (2009)

    Article  Google Scholar 

  37. Torrealdea, F.J., Sarasola, C., d’Anjou, A., Moujahid, A., et al.: Energy efficiency of information transmission by electrically coupled neurons. Biosystems 97, 60–71 (2009)

    Article  MATH  Google Scholar 

  38. Wang, Z.Y., Wang, R.B., Fang, R.Y.: Energy coding in neural network with inhibitory neurons. Cogn. Neurodyn. 9, 129–144 (2015)

    Article  Google Scholar 

  39. Zheng, H.W., Wang, R.B., Qu, J.Y.: Effect of different glucose supply conditions on neuronal energy metabolism. Cogn. Neurodyn. 10, 563–571 (2016)

    Article  Google Scholar 

  40. Wang, R.B., Zhang, Z.K.: Energy coding in biological neural networks. Cogn. Neurodyn. 1, 203–212 (2007)

    Article  Google Scholar 

  41. Wang, R.B., Zhu, Y.T.: Can the activities of the large scale cortical network be expressed by neural energy? A brief review. Cogn. Neurodyn. 10, 1–5 (2016)

    Article  MathSciNet  Google Scholar 

  42. Wang, Y., Wang, C.N., Ren, G.D., et al.: Energy dependence on modes of electric activities of neuron driven by multi-channel signals. Nonlinear Dyn. 89, 1967–1987 (2017)

    Article  Google Scholar 

  43. Yu, L.C., Liu, L.W.: Optimal size of stochastic Hodgkin–Huxley neuronal systems for maximal energy efficiency in coding pulse signals. Phys. Rev. E 89, 032725 (2014)

    Article  Google Scholar 

  44. Yu, L.C., Zhang, C., Liu, L.W., et al.: Energy-efficient population coding constrains network size of a neuronal array system. Sci. Rep. 6, 19369 (2016)

    Article  Google Scholar 

  45. Yu, L.C., Yu, Y.: Energy-efficient neural information processing in individual neurons and neuronal networks. J. Neurosci. Res. 95, 2253–2266 (2017)

    Article  Google Scholar 

  46. Li, J.J., Liu, S.B., Liu, W.M., Yu, Y.G., Wu, Y.: Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation. Nonlinear Dyn. 83, 801–810 (2016)

    Article  MathSciNet  Google Scholar 

  47. Wang, H.T., Chen, Y.: Spatiotemporal activities of neural network exposed to external electric fields. Nonlinear Dyn. 85, 881–891 (2016)

    Article  MathSciNet  Google Scholar 

  48. Lv, M., Wang, C.N., Ren, G.D., Ma, J.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

  49. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

  50. Li, Q.D., Zeng, H.Z., Li, J.: Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 79, 2295–2308 (2015)

    Article  MathSciNet  Google Scholar 

  51. Gu, H.G., Pan, B.B.: Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors. Front. Comput. Neurosci. 9, 108 (2015)

    Article  Google Scholar 

  52. Jia, B., Gu, H.G.: Dynamics and physiological roles of stochastic neural firing patterns near bifurcation points. Int. J. Bifurcat. Chaos 27, 1750113 (2017)

    Article  MATH  Google Scholar 

  53. Wu, F.Q., Wang, C.N., Jin, W.Y., et al.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)

    Article  MathSciNet  Google Scholar 

  54. Wu, J., Xu, Y., Ma, J.: Lévy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS One 12, e0174330 (2017)

    Article  Google Scholar 

  55. Wang, Y., Ma, J., Xu, Y., et al.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurcat. Chaos 27, 1750030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Lu, L.L., Jia, Y., Liu, W.H., Yang, L.J.: Mixed stimulus-induced model selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity 2017, 1–11 (2017). https://doi.org/10.1155/2017/7628537

  57. Wang, L.F., Qiu, K., Jia, Y.: Effects of time delays in a mathematical bone model. Chin. Phys. B 26, 030503 (2017)

    Article  Google Scholar 

  58. Qiu, K., Gao, K.F., et al.: A kinetic model of multiple phenotypic states for breast cancer cells. Sci. Rep. 7, 9890 (2017)

    Article  Google Scholar 

  59. Qiu, K., Wang, L.F., Shen, J., et al.: A van der Waals-like transition between normal and cancerous phases in cell populations dynamics of colorectal cancer. Sci. Rep. 6, 36620 (2016)

    Article  Google Scholar 

  60. Pei, Q.M., Zhan, X., Yang, L.J., et al.: Fluctuation and noise propagation in phenotypic transition cascades of clonal populations. Phys. Rev. E 92, 012721 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Prof. Jun Ma from Lanzhou University of Technology for the constructive suggestions. This work was supported by the National Natural Science Foundation of China under 11775091 and 11474117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, M., Jia, Y., Xu, Y. et al. Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn 91, 515–523 (2018). https://doi.org/10.1007/s11071-017-3886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3886-2

Keywords

Navigation