Skip to main content
Log in

Coexistence of Attractors and Its Control with Selection of a Desired Attractor in a Model of Extended Hindmarsh–Rose Neuron with Nonlinear Smooth Fitting Function: Microcontroller Implementation

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

In this paper, we present a fitted model of the extended Hindmarsh–Rose (eHR) neuron constructed using the hyperbolic tangent composite functions to replace the non-linear polynomial functions present in the original model of the eHR neuron.

Methods

Thus, through classical techniques of analysis of nonlinear systems, we observe complex phenomena generated by this system when the excitation current varies. In addition, a variation of the bifurcation parameters allows us to see that the adjusted model of the neuron eHR is sensitive to the initial conditions, and therefore exhibits the multistability, which is produced by the phenomenon of parallel branches or hysteresis in this system. To control these coexistences of attractors, a control method based on the feedback term is applied to the model.

Results

We see that the addition of this space-dependent feedback term to the dynamic equation of this model drives the dynamic towards the desired attractor by annihilating the other. This powerful technique makes it possible to move from a multistable system to a monostable system.

Conclusion

Finally, we propose an on-board system implementation of this neural circuit using microcontroller technology. This constitutes an important and reliable tool which can best mimic biological neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abraham RH, Stewart HB (1986) A chaotic blue sky catastrophe in forced relaxation oscillations. Phys D 21:394–400

    Article  MathSciNet  MATH  Google Scholar 

  2. Aram Z, Jafari S, Ma J, Sprott JC, Zendehrouh S, Pham VT (2017) Using chaotic artificial neural networks to model memory in the brain. Commun Nonlinear Sci Numer Simul 44:449–59

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao BC, Yang QF, Zhu L, Bao H, Xu Q, Yu YJ, Chen M (2019) Chaotic bursting dynamics and coexisting multistable firing patterns in 3D autonomous Morris-Lecar model and microcontroller-based validations. Int. J. Bifurc Chaos 29:1950134

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao BC, Zhu Y, Li CQ, Bao H, Xu Q (2020) Global multistability and analog circuit implementation of an adapting synapse-based neuron model. Nonlinear Dyn 101:1105–1118

    Article  Google Scholar 

  5. Bao BC, Zhu YX, Ma J (2021) Memristive neuron model with an adapting synapse and its hardware experiments. Sci China Tech Sci 64(5):1107–1117. https://doi.org/10.1007/s11431-020-1730-0

    Article  Google Scholar 

  6. Borgers C (2017) An introduction to modeling neuronal dynamics. Springer International Publishing, p 17

    Book  MATH  Google Scholar 

  7. De Lange E, Hasler M (2008) Predicting single spikes and spike patterns with the Hindmarsh-Rose model. Biol Cybern 99:349–60

    Article  MathSciNet  MATH  Google Scholar 

  8. Gonzalez-Miranda JM (2003) Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model. Chaos 13:825–45

    Article  MathSciNet  MATH  Google Scholar 

  9. Gonzalez-Miranda JM (2007) Complex bifurcation structures in the Hindmarsh-Rose model. Int J Bifurc Chaos 17:3071–83

    Article  MathSciNet  MATH  Google Scholar 

  10. Grebogi C, Ott E, Yoke JA (1983) Crises, sudden changes in chaotic attractors and transient chaos. Phys D 7:181–200

    Article  MathSciNet  MATH  Google Scholar 

  11. Grebogi C, Ott E, Romeiras F, Yoke JA (1987) Critical exponents for crisis induced intermittency. Phys Rev A 36:5365–80

    Article  MathSciNet  Google Scholar 

  12. Grebogi C, Ott E, Yorke JA (1987) Chaos, strange attractors and fractal basin boundaries in nonlinear dynamics. Sci New Ser 238:632–8

    MathSciNet  MATH  Google Scholar 

  13. Gu HG, Pan BB, Chen GR, Duan LX (2014) Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn 78:391–407

    Article  MathSciNet  Google Scholar 

  14. Heidarpur M, Ahmadi A, Ahmadi M, Azghadi MR (2019) CORDIC- SNN: On-FPGA STDP learning with Izhikevich neurons. IEEE Trans Circ Syst I Reg Papers 66:2651–2661

    Article  Google Scholar 

  15. Herz AVM, Gollisch T, Machens CK, Jaeger D (2006)Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Sci 314:80

  16. Heyward P, Ennis M, Keller A, Shipley MT (2001) Membrane bistability in olfactory bulb mitral cells. J Neurosci 21:5311–20

    Article  Google Scholar 

  17. Hindmarsh JL, Rose RM (1982) A model of the nerve impulse using two first-order differential equations. Nature 296:162–164

    Article  Google Scholar 

  18. Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B Biol Sci 221:87–102

    Article  Google Scholar 

  19. Hodgkin AL, Huxley AF (1952) Propagation of electrical signals along giant nerve fibres. J Physiol Lond 117:500

  20. Hounsgaard J, Kiehn O (1989) Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. J Physiol 414:265–82

    Article  Google Scholar 

  21. Hu X, Liu C, Liu NJ, Li S (2016) An electronic implementation for Morris-Lecar neuron model. Nonlinear Dyn 84:2317–2332

    Article  MathSciNet  Google Scholar 

  22. Hu X, Feng G, Duan SK, Liu L (2017) A memristive multilayer cellular neural network with applications to image processing. IEEE Trans Neural Netw Learn Syst 28:1889–1901

    Article  MathSciNet  Google Scholar 

  23. Jiang YN, Huang P, Zhu DB, Han RZ, Liu LF, Liu XY, Kang JF (2019) Design and hardware implementation of neuromorphic systems with RRAM synapses and threshold controlled neurons for pattern recognition. IEEE Trans Circ Syst I Reg Papers 65:2726–2738

    Article  Google Scholar 

  24. Cai JM, Bao H, Xu Q, Hua ZY, Bao B (2021) Smooth nonlinear fitting scheme for analog multiplierless implementation of Hindmarsh-Rose neuron model. Nonlinear Dyn. https://doi.org/10.1007/s11071-021-06453-9

    Article  Google Scholar 

  25. Jokar E, Soleimani H (2017) Digital multiplierless realization of a calcium-based plasticity model. IEEE Trans Circ Syst II Exp Briefs 64:832–836

    Google Scholar 

  26. Jokar E, Abolfathi H, Ahmadi A, Ahmadi M (2019) An efficient uniform-segmented neuron model for large-scale neuromorphic circuit design: simulation and FPGA synthesis results. IEEE Trans Circ Syst I Reg Papers 66:2336–2349

    Article  MathSciNet  MATH  Google Scholar 

  27. Kengne J, Chedjou JC, Kom M, Kyamakya K, Kamdoum VT (2014) Regular oscillations, chaos and multistability in a system of two coupled van der Pol oscillators numerical and experimental studies. Nonlinear Dyn 76:1119–32

    Article  MathSciNet  Google Scholar 

  28. Kengne J, Jafari S, Njitacke ZT, Yousefi AK, Cheukem A (2017) Dynamic analysis and electronic circuit implementation of a novel 3D autonomous system without linear terms. Commun Nonlinear Sci Numer Simul. https://doi.org/10.1016/j.cnsns.2017.04.017

    Article  MATH  Google Scholar 

  29. Kiran Y, Neeraj KK, Manish DS (2017) Intermittent feedback induces attractor selection. Phys Rev E 95:042215

    Article  MathSciNet  Google Scholar 

  30. Kuznetsov YA (1998) Elements of applied bifurcation theory. Springer, New YorK

    MATH  Google Scholar 

  31. Lai Q, Norouzi B, Liu F (2018) Dynamic analysis, circuit realization, control design and image encryption application of an extended Lu system with coexisting attractors. Chaos Solitons Fractals 114:230–245

    Article  MathSciNet  MATH  Google Scholar 

  32. Lai Q, Wan Z, Kengne LK, Kuate PDK, Chen C (2021) Two-memristor-based chaotic system with infinite coexisting attractors. IEEE Trans Circ Syst II Express Briefs 68(6):2197–2201

    Google Scholar 

  33. Lai Q (2021) A unified chaotic system with various coexisting attractors. Int J Bifurc Chaos 31(1):2150013

    Article  MathSciNet  MATH  Google Scholar 

  34. Lai Q, Wan Z, Kengne LK, Kuate PDK (2020) Modeling and circuit realisation of a new no-equilibrium chaotic system with hidden attractor and coexisting attractors. Electron Lett 56(20):1044–1046

    Article  Google Scholar 

  35. Lai Q, Wan Z, Kuate PDK, Fotsin H (2020) Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. Commun Nonlinear Sci Numer Simul 89:105341

    Article  MathSciNet  MATH  Google Scholar 

  36. Larras B, Lahuec C, Seguin F, Arzel M (2016) Ultra-lowenergy mixed-signal IC implementing encoded neural networks. IEEE Trans Circ Syst I Reg Papers 63:1974–1985

    Article  Google Scholar 

  37. Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky h (2005) Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat Neurosci 8:202–11

    Article  Google Scholar 

  38. Ma J, Yang Z, Yang L et al (2019) Phase coupling synchronization of FHN neurons connected by a Josephson junction. J Zhejiang Univ Sci A 20:639

  39. Maggio GM, De Feo O, Kennedy MP (1999) Nonlinear analysis of the Colpitts oscillator and application to design. IEEE Trans Circ Syst 46:1118–30

    Article  MATH  Google Scholar 

  40. Malashchenko T, Shilnikov A, Cymbalyuk G (2011) Bistability of bursting and silence regimes in a model of a leech heart interneuron. Phys Rev E 84(1–8):041910

    Article  Google Scholar 

  41. Marin B, Barnett WH, Doloc-Mihu A, Calabrese RL, Cymbalyuk GS (2013) High prevalence of multistability of rest states and bursting in a database of a model neuron. PLoS Comput Biol 9(1–12):E1002930

    Article  Google Scholar 

  42. Masoller C (1994) Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Phys Rev A 50:2569–78

    Article  Google Scholar 

  43. Megam NEB, Fotsin HB, Louodop FP, Kamdoum TV, Hilda CA (2016) Bifurcations and multistability in the extended Hindmarsh-Rose neuronal oscillator. Chaos Solitons Fractals 85:151–63

    Article  MathSciNet  MATH  Google Scholar 

  44. Mondal A, Kumar Upadhyay R, Ma J, Yadav BK, Sharma SK (2017) Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn Neurodyn 13:393–407

    Article  Google Scholar 

  45. Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193–213

    Article  Google Scholar 

  46. Nayfeh AH, Balachandran B (1995) Applied nonlinear dynamics analytical, computational, and experimental methods. Germany Wiley

    Book  MATH  Google Scholar 

  47. Njitacke ZT, Kengne J, Fotsin HB (2018) A plethora of behaviors in a memristor based Hopfield neural networks (HNNs). Int J Dyn Control 7:36–52

    Article  MathSciNet  Google Scholar 

  48. Njitacke Z, Kengne J (2018) Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: coexistence of multiple attractors and remerging Feigenbaum trees. AEU-Int J Electron Commun 93:242–252

    Article  Google Scholar 

  49. Njitacke ZT, Kengne J, Fonzin FT, Leutcha BP, Fotsin HB (2019) Dynamical analysis of a novel 4-neurons based Hopfield neural network: emergences of antimonotonicity and coexistence of multiple stable states. Int J Dyn Control 7:823

    Article  MathSciNet  Google Scholar 

  50. Njitacke ZT, Kengne J (2019) Nonlinear dynamics of three-neurons-based Hopfield neural networks (HNNs): remerging Feigenbaum trees, coexisting bifurcations and multiple attractors. J Circ Syst Comput 28:1950121

    Article  Google Scholar 

  51. Njitacke ZT, Doubla IS, Mabekou S, Kengne J (2020) Hidden electrical activity of two neurons connected with an asymmetric electric coupling subject to electromagnetic induction: coexistence of patterns and its analog implementation. Chaos Solitons Fractals 137:109785

    Article  MathSciNet  Google Scholar 

  52. Njitacke ZT, Doubla IS, Kengne J, Cheukem A (2020) Coexistence of firing patterns and its control in two neurons coupled through an asymmetric electrical synapse. Chaos 30:023101

    Article  MathSciNet  MATH  Google Scholar 

  53. Njitacke ZT, Sone ME, Fozin TF, Tsafack N, Leutcho GD, Tchapga CT (2021) Control of multistability with selection of chaotic attractor: application to image encryption. Eur Phys J Spec Top 230(7):1839–1854

    Article  Google Scholar 

  54. Noble D (1960) Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature 188:495

    Article  Google Scholar 

  55. Panahi S, Aram Z, Jafari S, Ma J, Sprott JC (2017) Modeling of epilepsy based on chaotic artificial neural network. Chaos Solitons Fractals 105:150–6

    Article  MathSciNet  Google Scholar 

  56. Pastor-Diaz I, Perez-Garcia VM, Encinas-Sanz F, Gerra JM (1983) Ordered and chaotic behavior of two coupled van der Pol oscillators. Phys Rev E 48:171–82

    Article  Google Scholar 

  57. Pastor-Diaz I, Lopez-Fragas A (1995) Dynamics of two coupled van der Pol oscillators. Phys Rev E 52:1480–9

    Article  MathSciNet  Google Scholar 

  58. Perrier JF, Hounsgaard J (2000) Development and regulation of response properties in spinal cord motoneurons. Brain Res Bull 53:529–35

    Article  Google Scholar 

  59. Prakash P, Rajagopal K, Singh JP, Roy BK (2018) Megastability in a quasi-periodically forced system exhibiting multistability, quasi-periodic behaviour, and its analogue circuit simulation. AEU-Int J Electron Commun 92:111–115

    Article  Google Scholar 

  60. Rahimian E, Zabihi S, Amiri M, Linares-Barranco B (2018) Digital implementation of the two-compartmental PinskyRinzel pyramidal neuron model. IEEE Trans Biomed Circ Syst 12:47–57

    Article  Google Scholar 

  61. Selverston AI, Rabinovich MI, Abarbanel HDI, Elson R, Szucs A, Pinto RD et al (2000) Reliable circuits from irregular neurons: a dynamical approach to understanding central pattern generators. J Physiol 94:357–74

    Google Scholar 

  62. Shilnikov A, Cymbalyuk G (2005) Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys Rev Lett 94(1–4):048101

    Article  Google Scholar 

  63. Storace M, Linaro D, De Lange E (2008) The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18:033128

  64. Tuna M, Karthikeyan A, Rajagopal K, Alcin M, Koyuncu I (2019) Hyperjerk multiscroll oscillators with megastability: analysis, FPGA implementation and a novel ANNring-based true random number generator. AEU-Int J Electron Commun 112:152941

    Article  Google Scholar 

  65. Tapche RW, Njitacke ZT, Kengne J (2021) Complex dynamics of a novel 3D autonomous system without linear terms having line of equilibria: coexisting bifurcations and circuit design. FB Pelap Analog Integr Circ Signal Process 103(1):57–7

    Article  Google Scholar 

  66. Vaithianathan V, Veijun J (1999) Coexistence of four different attractors in a fundamental power system model. IEEE Trans Circ Syst I 46:405–9

    Article  Google Scholar 

  67. Wouapi KM, Fotsin HB, Feudjio KF, Njitacke ZT (2019) Hopf bifurcation, offset boosting and remerging Feigenbaum trees in an autonomous chaotic system with exponential nonlinearity. SN Appl Sci 1:1715

    Article  Google Scholar 

  68. Wouapi KM, Fotsin H, Louodop FP, Feudjio KF, Njitacke TZ, Djeudjo TH (2020) Various firing activities and finite-time synchronization of an improved Hindmarsh-Rose neuron model under electric field effect. Cogn Neurodyn. https://doi.org/10.1007/s11571-020-09570-0

    Article  Google Scholar 

  69. Xu Y, Jia Y, Ge MY, Lu LL, Yang LJ, Zhan X (2018) Effects of ion channel blocks on electrical activity of stochastic Hodgkin-Huxley neural network under electromagnetic induction. Neurocomputing 283:196–204

    Article  Google Scholar 

  70. Zhang S, Cui K, Zhang X, Shi X, Ge M, Zhao M, Xu G, Yan W (2018) Effect of transcranial ultrasonic-magnetic stimulation on two types of neural firing behaviors in modified Izhikevich model. IEEE Trans Magn 54:5000204

    Google Scholar 

  71. Ying X, Yeye G, Guodong R, Jun M (2020) Dynamics and stochastic resonance in a thermosensitive neuron. Appl Math Comput 385:125427

    Article  MathSciNet  MATH  Google Scholar 

  72. Ying X, Minghua L, Zhigang Z, Jun M (2020) Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent. Chin Phys 29:098704

    Article  Google Scholar 

  73. Yong L, Wan-jiang X, Jun M, Faris A, Aatef H (2020) A new photosensitive neuron model and its dynamics. Inf Technol Electron Eng Front. https://doi.org/10.1631/FITEE.1900606

    Article  Google Scholar 

Download references

Acknowledgements

Jules Tagne Fossi thanks the Faculty of Sciences of the University of Ngaoundéré for its important contribution. Zeric Tabekoueng Njitacke has been supported by the Polish National Science Centre under the Grant OPUS 14 No. 2017/27/B/ST8/01330.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jules Tagne Fossi or Jacques Atangana.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fossi, J.T., Edima, H.C., Njitacke, Z.T. et al. Coexistence of Attractors and Its Control with Selection of a Desired Attractor in a Model of Extended Hindmarsh–Rose Neuron with Nonlinear Smooth Fitting Function: Microcontroller Implementation. J. Vib. Eng. Technol. 10, 2751–2764 (2022). https://doi.org/10.1007/s42417-022-00518-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00518-8

Keywords

Navigation