Skip to main content
Log in

Vibration analysis of rotor systems with bearing clearance using a novel conformal contact model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a novel cylindrical conformal contact model for the large-diameter bearing with small clearance to its housing in aero-engines. Since the clearance between them is usually below one-thousandth of the bearing nominal diameter, Hertz’s law is not feasible in this case. The proposed contact model accounts for the surface contact condition and more geometric parameters of the bearing-housing component to obtain more accurate prediction results, which are validated by the finite element method (FEM) results. Based on this novel contact model, the vibration response of a single-disk rotor introduced by Ishida et al. is investigated. Numerical results are in good agreement with experimental results by Ishida et al. Influences of several critical parameters on the vibration responses are also studied. Furthermore, a complex dual-rotor system whose front bearing has a clearance stop between the outer ring and housing is analyzed with the proposed model. Good agreement is shown in the comparison between numerical and experimental results, which shows the feasibility of the proposed model in the contact simulation of large-diameter bearings with a small clearance. The results show that periodic collision between the bearing and housing could lead to self-excited vibrations. A natural frequency component in frequency-domain responses is an important indicator for the occurrence of self-excited vibration. This work provides a reference for the fault diagnosis of practical rotor-bearing systems with bearing clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

All data and code may be made available upon reasonable request with the corresponding author.

References

  1. Cao, H., Shi, F., Li, Y., et al.: Vibration and stability analysis of rotor-bearing-pedestal system due to clearance fit. Mech. Syst. Signal Process. 133, 106275 (2019). https://doi.org/10.1016/j.ymssp.2019.106275

    Article  Google Scholar 

  2. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 3rd edn. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28664-8_9

    Book  Google Scholar 

  3. Ehrich, F.F.: High order subharmonic response of high speed rotors in bearing clearance. ASME. J. Vib. Acoust. 110(1), 9–16 (1988). https://doi.org/10.1115/1.3269488

    Article  Google Scholar 

  4. Ehrich, F.F.: Observations of subcritical superharmonic and chaotic response in rotordynamics. J. Vib. Acoust. 114(1), 93–100 (1992). https://doi.org/10.1115/1.2930240

    Article  Google Scholar 

  5. Ehrich, F.F.: Observed rotordynamic phenomena in aircraft gas turbine development. In: Proceedings of the ASME 2015 international design engineering technical conferences and computers and information in engineering conference. 2015, V008T13A080. ASME. https://doi.org/10.1115/DETC2015-48108

  6. Johnson, K.L., Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  7. Skrinjar, L., Slavič, J., Boltežar, M.: A review of continuous contact-force models in multibody dynamics. Int. J. Mech. Sci. 145, 171–187 (2018). https://doi.org/10.1016/j.ijmecsci.2018.07.010

    Article  Google Scholar 

  8. Thorin, A., Legrand, M.: Nonsmooth modal analysis: from the discrete to the continuous settings. In: Advanced Topics in Nonsmooth Dynamics: Transactions of the European Network for Nonsmooth Dynamics, pp. 191–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75972-2_11

    Chapter  Google Scholar 

  9. Brogliato, B.: Νonsmooth mechanics: models. In: Dynamics and Control, 3rd edn. Springer-Verlag, London (2016). https://doi.org/10.1007/978-3-319-28664-8

    Chapter  Google Scholar 

  10. Flores, P., Ambrósio, J., Lankarani, H.M.: Contact-impact events with friction in multibody dynamics: back to basics. Mech. Mach. Theory 184, 105305 (2023). https://doi.org/10.1016/j.mechmachtheory.2023.105305

    Article  Google Scholar 

  11. Leine, R., Acary, V., Brüls, O.: Advanced Topics in Nonsmooth Dynamics: Transactions of the European Network for Nonsmooth Dynamics. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75972-2

    Book  Google Scholar 

  12. Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.12.002

    Article  Google Scholar 

  13. Khulief, Y.A.: Modeling of impact in multibody systems: an overview. J. Comput. Nonlinear Dyn. (2013). https://doi.org/10.1115/1.4006202

    Article  Google Scholar 

  14. Corral, E., Moreno, R.G., García, M.J.G., et al.: Nonlinear phenomena of contact in multibody systems dynamics: a review. Nonlinear Dyn. 104, 1269–1295 (2021). https://doi.org/10.1007/s11071-021-06344-z

    Article  Google Scholar 

  15. Stronge, W.J.: Rigid body collisions with friction. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1990(431), 169–181 (1881). https://doi.org/10.1098/rspa.1990.0125

    Article  MathSciNet  Google Scholar 

  16. Stronge, W.J.: Friction in collisions: resolution of a paradox. J. Appl. Phys. 69(2), 610–612 (1991). https://doi.org/10.1063/1.348922

    Article  Google Scholar 

  17. Khulief, Y.A., Shabana, A.A.: Dynamic analysis of constrained system of rigid and flexible bodies with intermittent motion. ASME. J. Mech. Trans. Autom. 108(1), 38–45 (1986). https://doi.org/10.1115/1.3260781

    Article  Google Scholar 

  18. Rismantab-Sany, J., Shabana, A.A.: Impulsive motion of non-holonomic deformable multibody systems part I: Kinematic and dynamic equations. J. Sound Vib. 127(2), 193–204 (1988). https://doi.org/10.1016/0022-460X(88)90296-9

    Article  Google Scholar 

  19. Shabana, A.A., Rismantab-Sany, J.: Impulsive motion of non-holonomic deformable multibody systems part II: Impact analysis. J. Sound Vib. 127(2), 205–219 (1988). https://doi.org/10.1016/0022-460X(88)90297-0

    Article  Google Scholar 

  20. Yigit, A.S., Ulsoy, A.G., Scott, R.A.: Dynamics of a radially rotating beam with impact, part 1: theoretical and computational model. J. Vib. Acoust. 112(1), 65–70 (1990). https://doi.org/10.1115/1.2930100

    Article  Google Scholar 

  21. Yigit, A.S., Ulsoy, A.G., Scott, R.A.: Dynamics of a radially rotating beam with impact, part 2: experimental and simulation results. J. Vib. Acoust. 112(1), 71–77 (1990). https://doi.org/10.1115/1.2930101

    Article  Google Scholar 

  22. Machado, M., Moreira, P., Flores, P., et al.: Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012). https://doi.org/10.1016/j.mechmachtheory.2012.02.010

    Article  Google Scholar 

  23. Jia, Y., Chen, X.: Application of a new conformal contact force model to nonlinear dynamic behavior analysis of parallel robot with spherical clearance joints. Nonlinear Dyn. 108(3), 2161–2191 (2022). https://doi.org/10.1007/s11071-022-07344-3

    Article  MathSciNet  Google Scholar 

  24. Pereira, C.M., Ramalho, A.L., Ambrósio, J.A.: A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 63, 681–697 (2011). https://doi.org/10.1007/s11071-010-9830-3

    Article  Google Scholar 

  25. Pereira, C., Ramalho, A., Ambrosio, J.: Applicability domain of internal cylindrical contact force models. Mech. Mach. Theory 78, 141–157 (2014). https://doi.org/10.1016/j.mechmachtheory.2014.03.010

    Article  Google Scholar 

  26. Rahnejat, H.: Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends, pp. 171–221. Elsevier, Amsterdam (2010). https://doi.org/10.1533/9781845693619

    Book  Google Scholar 

  27. Liu, C.S., Zhang, K., Yang, R.: The FEM analysis and approximate model for cylindrical joints with clearances. Mech. Mach. Theory 42(2), 183–197 (2007). https://doi.org/10.1016/j.mechmachtheory.2006.02.006

    Article  Google Scholar 

  28. Liu, C., Zhang, K., Yang, L.: The compliance contact model of cylindrical joints with clearances. Acta Mech. Sin. 21, 451–458 (2005). https://doi.org/10.1007/s10409-005-0061-7

    Article  Google Scholar 

  29. Liu, C., Zhang, K., Yang, L.: Normal force-displacement relationship of spherical joints with clearances. J. Comput. Nonlinear Dyn. 1(2), 160–167 (2006). https://doi.org/10.1115/1.2162872

    Article  Google Scholar 

  30. Pereira, C., Ramalho, A., Ambrosio, J.: An enhanced cylindrical contact force model. Multibody Syst. Dyn. 35, 277–298 (2015). https://doi.org/10.1007/s11044-015-9463-x

    Article  Google Scholar 

  31. Pereira, C., Ramalho, A., Ambrósio, J.: Experimental and numerical validation of an enhanced cylindrical contact force model. In: Surface Effects and Contact Mechanics X—Computational Methods and Experiments, vol. 7, pp. 49–60. WIT Press, UK (2011)

    Google Scholar 

  32. Bai, Z.F., Zhao, Y.: A hybrid contact force model of revolute joint with clearance for planar mechanical systems. Int. J. Non-Linear Mech. 48, 15–36 (2013). https://doi.org/10.1016/j.ijnonlinmec.2012.07.003

    Article  Google Scholar 

  33. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. ASME. J. Appl. Mech. 42(2), 440–445 (1975). https://doi.org/10.1115/1.3423596

    Article  Google Scholar 

  34. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASME, 3691, pp. 45–51. (1989). https://doi.org/10.1115/DETC1989-0104

  35. Gonthier, Y., McPhee, J., Lange, C., et al.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11, 209–233 (2004). https://doi.org/10.1023/B:MUBO.0000029392.21648.bc

    Article  Google Scholar 

  36. Flores, P., Machado, M., Silva, M.T., et al.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011). https://doi.org/10.1007/s11044-010-9237-4

    Article  Google Scholar 

  37. Li, G.X., Paidoussis, M.P.: Impact phenomena of rotor-casing dynamical systems. Nonlinear Dyn. 5, 53–70 (1994). https://doi.org/10.1007/BF00045080

    Article  Google Scholar 

  38. Ishida, Y., Inagaki, M., Ejima, R., et al.: Nonlinear resonances and self-excited oscillations of a rotor caused by radial clearance and collision. Nonlinear Dyn. 57, 593–605 (2009). https://doi.org/10.1007/s11071-009-9482-3

    Article  Google Scholar 

  39. Ishida, Y., Yamamoto, T.: Linear and Nonlinear Rotordynamics: A Modern Treatment with Applications. Wiley, New York (2013)

    Google Scholar 

  40. Inagaki, M., Ishida, Y.: Mechanism of occurrence of self-excited oscillations of a rotor with a clearance between bearing holder and housing. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 54785, pp. 965-974. (2011).https://doi.org/10.1115/DETC2011-48052

  41. Smolík, L., Hajžman, M., Byrtus, M.: Investigation of bearing clearance effects in dynamics of turbochargers. Int. J. Mech. Sci. 127, 62–72 (2017). https://doi.org/10.1016/j.ijmecsci.2016.07.013

    Article  Google Scholar 

  42. Chen, G., Qu, M.: Modeling and analysis of fit clearance between rolling bearing outer ring and housing. J. Sound Vib. 438, 419–440 (2019). https://doi.org/10.1016/j.jsv.2017.11.004

    Article  Google Scholar 

  43. Zhang, H., Lu, K., Zhang, W., et al.: Investigation on dynamic behaviors of rotor system with looseness and nonlinear supporting. Mech. Syst. Signal Process. 166, 108400 (2022). https://doi.org/10.1016/j.ymssp.2021.108400

    Article  Google Scholar 

  44. Hou, L., Chen, Y., Chen, Y.: Combination resonances of a dual-rotor system with inter-shaft bearing. Nonlinear Dyn. 111(6), 5197–5219 (2023). https://doi.org/10.1007/s11071-022-08133-8

    Article  Google Scholar 

  45. Lu, Z., Wang, X., Hou, L., et al.: Nonlinear response analysis for an aero engine dual-rotor system coupled by the inter-shaft bearing. Arch. Appl. Mech. 89(7), 1275–1288 (2019). https://doi.org/10.1007/s00419-018-01501-0

    Article  Google Scholar 

  46. Prabith, K., Krishna, I.R.P.: The numerical modeling of rotor–stator rubbing in rotating machinery: a comprehensive review. Nonlinear Dyn. 101(2), 1317–1363 (2020). https://doi.org/10.1007/s11071-020-05832-y

    Article  Google Scholar 

  47. Crespo, R.S., Shaw, A.D., Friswell, M.I., et al.: Experimental characterisation of asynchronous partially contacting motion in a multiple-degree-of-freedom rotor system. Mech. Syst. Signal Process. 145, 106904 (2020). https://doi.org/10.1016/j.ymssp.2020.106904

    Article  Google Scholar 

  48. Shaw, A.D., Champneys, A.R., Friswell, M.I.: Normal form analysis of bouncing cycles in isotropic rotor stator contact problems. Int. J. Mech. Sci. 155, 83–97 (2019). https://doi.org/10.1016/j.ijmecsci.2019.02.035

    Article  Google Scholar 

  49. Yu, P., Wang, C., Hou, L., et al.: Dynamic characteristics of an aeroengine dual-rotor system with inter-shaft rub-impact. Mech. Syst. Signal Process. 166, 108475 (2022). https://doi.org/10.1016/j.ymssp.2021.108475

    Article  Google Scholar 

  50. Jie, H., Pingchao, Y.U., Zhang, D., et al.: Modal characteristics analysis for a flexible rotor with non-smooth constraint due to intermittent rub-impact. Chin. J. Aeronaut. 31(3), 498–513 (2018). https://doi.org/10.1016/j.cja.2018.01.003

    Article  Google Scholar 

  51. Hong, J., Yu, P., Zhang, D., et al.: Nonlinear dynamic analysis using the complex nonlinear modes for a rotor system with an additional constraint due to rub-impact. Mech. Syst. Signal Process. 116, 443–461 (2019). https://doi.org/10.1016/j.ymssp.2018.06.061

    Article  Google Scholar 

  52. Pingchao, Y.U., Yanhong, M.A., Jie, H., et al.: Application of complex nonlinear modes to determine dry whip motion in a rubbing rotor system. Chin. J. Aeronaut. 34(1), 209–225 (2021). https://doi.org/10.1016/j.cja.2020.09.049

    Article  Google Scholar 

  53. Yu, P., Hou, L., Wang, C., et al.: Insights into the nonlinear behaviors of dual-rotor systems with inter-shaft rub-impact under co-rotation and counter-rotation conditions. Int. J. Non-Linear Mech. 140, 103901 (2022). https://doi.org/10.1016/j.ijnonlinmec.2021.103901

    Article  Google Scholar 

  54. Yu, P., Chen, G., Li, L.: Modal analysis strategy and nonlinear dynamic characteristics of complicated aero-engine dual-rotor system with rub-impact. Chin. J. Aeronaut. 35(1), 184–203 (2022). https://doi.org/10.1016/j.cja.2020.10.031

    Article  Google Scholar 

  55. Chipato, E.T., Shaw, A.D., Friswell, M.I.: Nonlinear rotordynamics of a MDOF rotor–stator contact system subjected to frictional and gravitational effects. Mech. Syst. Signal Process. 159, 107776 (2021). https://doi.org/10.1016/j.ymssp.2021.107776

    Article  Google Scholar 

  56. Wang, N., Jiang, D., Behdinan, K.: Vibration response analysis of rubbing faults on a dual-rotor bearing system. Arch. Appl. Mech. 87(11), 1891–1907 (2017). https://doi.org/10.1007/s00419-017-1299-9

    Article  Google Scholar 

  57. Wang, N., Liu, C., Jiang, D., et al.: Casing vibration response prediction of dual-rotor-blade-casing system with blade-casing rubbing. Mech. Syst. Signal Process. 118, 61–77 (2019). https://doi.org/10.1016/j.ymssp.2018.08.029

    Article  Google Scholar 

  58. Yang, Y., Ouyang, H., Wu, X., et al.: Bending-torsional coupled vibration of a rotor-bearing-system due to blade-casing rub in presence of non-uniform initial gap. Mech. Mach. Theory 140, 170–193 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.05.025

    Article  Google Scholar 

  59. Yang, Y., Ouyang, H., Yang, Y., et al.: Vibration analysis of a dual-rotor-bearing-double casing system with pedestal looseness and multi-stage turbine blade-casing rub. Mech. Syst. Signal Process. 143, 106845 (2020). https://doi.org/10.1016/j.ymssp.2020.106845

    Article  Google Scholar 

  60. Jin, Y., Liu, Z., Yang, Y., et al.: Nonlinear vibrations of a dual-rotor-bearing-coupling misalignment system with blade-casing rubbing. J. Sound Vib. 497, 115948 (2021). https://doi.org/10.1016/j.jsv.2021.115948

    Article  Google Scholar 

  61. Kim, T.C., Rook, T.E., Singh, R.: Effect of smoothening functions on the frequency response of an oscillator with clearance non-linearity. J. Sound Vib. 263(3), 665–678 (2003). https://doi.org/10.1016/S0022-460X(02)01469-4

    Article  MathSciNet  Google Scholar 

  62. Bently, D.E., Hatch, C.T., Grissom, B.: Fundamentals of Rotating Machinery Diagnostics. ASME Press, New York (2002)

    Google Scholar 

  63. Hu, A., Xiang, L., Zhang, Y.: Experimental study on the intrawave frequency modulation characteristic of rotor rub and crack fault. Mech. Syst. Signal Process. 118, 209–225 (2019). https://doi.org/10.1016/j.ymssp.2018.08.051

    Article  Google Scholar 

  64. Zhou, P., Du, M., Chen, S., et al.: Study on intra-wave frequency modulation phenomenon in detection of rub-impact fault. Mech. Syst. Signal Process. 122, 342–363 (2019). https://doi.org/10.1016/j.ymssp.2018.12.011

    Article  Google Scholar 

  65. Chen, S., Yang, Y., Peng, Z., et al.: Detection of rub-impact fault for rotor-stator systems: a novel method based on adaptive chirp mode decomposition. J. Sound Vib. 440, 83–99 (2019). https://doi.org/10.1016/j.jsv.2018.10.010

    Article  Google Scholar 

  66. Zhou, P., Yang, Y., Wang, H., et al.: The relationship between fault-induced impulses and harmonic-cluster with applications to rotating machinery fault diagnosis. Mech. Syst. Signal Process. 144, 106896 (2020). https://doi.org/10.1016/j.ymssp.2020.106896

    Article  Google Scholar 

  67. Zhou, P., Chen, S., He, Q., et al.: Rotating machinery fault-induced vibration signal modulation effects: a review with mechanisms, extraction methods and applications for diagnosis. Mech. Syst. Signal Process. 200, 110489 (2023). https://doi.org/10.1016/j.ymssp.2023.110489

    Article  Google Scholar 

  68. Hong, J., Yang, Z., Wang, Y., et al.: Combination resonances of rotor systems with asymmetric residual preloads in bolted joints. Mech. Syst. Signal Process. 183, 109626 (2023). https://doi.org/10.1016/j.ymssp.2022.109626

    Article  Google Scholar 

  69. Yang, Z., Hong, J., Wang, D., et al.: Failure analysis of an aero-engine inter-shaft bearing due to clearance between the outer ring and its housing. Eng. Fail. Anal. 150, 107298 (2023). https://doi.org/10.1016/j.engfailanal.2023.107298

    Article  Google Scholar 

  70. Ao, W., Ke, Z., Zhuo, Z., et al.: Modeling strategy and dynamic analysis of a dual-rotor-bearing-casing system in aero-engine. Appl. Math. Model. (2023). https://doi.org/10.1016/j.apm.2023.06.016

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Nos. 52075018), the National Science and Technology Major Project (J2022-IV-0004-0021) and the Science Center for Gas Turbine Project (P2021- A-I-002-002). The support from Ms. Xinyi Ma is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Hong, J., Wang, D. et al. Vibration analysis of rotor systems with bearing clearance using a novel conformal contact model. Nonlinear Dyn 112, 7951–7976 (2024). https://doi.org/10.1007/s11071-024-09489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09489-9

Keywords

Navigation