Skip to main content
Log in

Nonlinear response analysis for an aero engine dual-rotor system coupled by the inter-shaft bearing

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper focuses on the nonlinear response characteristics of an aero engine dual-rotor system coupled by the cylindrical roller inter-shaft bearing. The motion equations of the system are formulated considering the unbalance excitations of the two rotors, vertical constant forces acting on the rotor system and the gravities. By using numerical calculation method, the motion equations are solved to obtain the nonlinear responses of the dual-rotor system. Accordingly, complex nonlinearities affected by the bearing radical clearance, the vertical constant force and the rotating speed ratio are discussed in detail. The jump phenomenon, hard resonant hysteresis characteristics are shown for a relatively large bearing clearance, and the soft resonant hysteresis characteristics can be observed for a relatively large vertical constant force. Moreover, the super-harmonic frequency components and the combined frequency components caused by the inter-shaft bearing are observed for both rotors. But the corresponding frequency components for the low-pressure rotor are more complex than that for the high-pressure rotor in same condition. These results would be helpful to recognize the nonlinear dynamic characteristics of dual-rotor bearing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Harris, T.A., Kotzalas, M.N.: Rolling Bearing Analysis—Essential Concepts of Bearing Technology, 5th edn, pp. 1–45. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  2. Vance, J.M., Zeidan, F.Y., Brian, Murphy: Machinery Vibration and Rotordynamics. Wiley, New York (2010)

    Book  Google Scholar 

  3. Sunnersjö, C.S.: Varying compliance vibrations of rolling bearings. J. Sound Vib. 58, 363–373 (1978)

    Article  Google Scholar 

  4. Gupta, P.K.: Dynamics of rolling-element bearings-part II: cylindrical roller bearing results. ASME J. Lubr. Technol. 101, 305–311 (1979)

    Article  Google Scholar 

  5. Gupta, P.K.: Dynamics of rolling-element bearings-part IV: ball bearing results. ASME J. Lubr. Technol. 101, 319–326 (1979)

    Article  Google Scholar 

  6. Kim, Y.B., Noah, S.T.: Bifurcation analysis for a modified Jeffcott rotor with bearing clearances. Nonlinear Dyn. 1, 221–241 (1990)

    Article  Google Scholar 

  7. Hess, D.P., Soom, A., Hess, D.P.: Normal vibrations and friction under harmonic loads: part I—Hertzian contacts. J. Tribol. 113, 80–86 (1991)

    Article  Google Scholar 

  8. Bai, C.Q., Qing-Yu, X.U., Zhang, X.L.: Nonlinear stability of balanced rotor due to effect of ball bearing internal clearance. Appl. Math. Mech. 27, 175–186 (2006)

    Article  Google Scholar 

  9. Bichri, A., Belhaq, M., Perret-Liaudet, J.: Control of vibroimpact dynamics of a single-sided Hertzian contact forced oscillator. Nonlinear Dyn. 63, 51–60 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, Z., Chen, Y., Cao, Q.: Bifurcations and hysteresis of varying compliance vibrations in the primary parametric resonance for a ball bearing. J. Sound Vib. 350, 171–184 (2015)

    Article  Google Scholar 

  11. Zhang, Z.Y., Chen, Y.S., Zhonggang, L.I.: Influencing factors of the dynamic hysteresis in varying compliance vibrations of a ball bearing. Sci. China Technol. Sci. 58, 775–782 (2015)

    Article  Google Scholar 

  12. Rigaud, E., Perret-Liaudet, J.: Experiments and numerical results on non-linear vibrations of an impacting Hertzian contact. Part 1: harmonic excitation. J. Sound Vib. 265, 289–307 (2003)

    Article  Google Scholar 

  13. Mevel, B., Guyader, J.L.: Experiments on routes to chaos in ball bearings. J. Sound Vib. 318, 549–564 (2008)

    Article  MATH  Google Scholar 

  14. Chen, G.: A new rotor-ball bearing-stator coupling dynamics model for whole aero-engine vibration. J. Vib. Acoust. 131, 1980–1998 (2009)

    Google Scholar 

  15. Bai, C., Zhang, H., Xu, Q.: Experimental and numerical studies on nonlinear dynamic behavior of rotor system supported by ball bearings. J. Eng. Gas Turbines Power 132, 082502 (2010)

    Article  Google Scholar 

  16. Yushu, C., Huabiao, Z.: Review and prospect on the research of dynamics of complete aero-engine systems. Hangkong Xuebao/Acta Aeronaut. Astronaut. Sin. 32, 1371–1391 (2011)

    Google Scholar 

  17. CAVALLARO, G., NELIAS, D., BON, F.: Analysis of high-speed intershaft cylindrical roller bearing with flexible rings. Tribol. Lubr. Technol. 48, 154–164 (2005)

    Google Scholar 

  18. Kappaganthu, K., Nataraj, C.: Nonlinear modeling and analysis of a rolling element bearing with a clearance. Commun. Nonlinear Sci. Numer. Simul. 16, 4134–4145 (2011)

    Article  MATH  Google Scholar 

  19. Tiwari, M., Gupta, K., Prakash, O.: Dynamic response of an unbalanced rotor supported on ball bearings. J. Sound Vib. 238, 757–779 (2000)

    Article  Google Scholar 

  20. Gupta, T.C., Gupta, K., Sehgal, D.K.: Instability and chaos of a flexible rotor ball bearing system: an investigation on the influence of rotating imbalance and bearing clearance. J. Eng. Gas Turbines Power 133, 283–292 (2010)

    Google Scholar 

  21. Fukata, S., Gad, E.H., Kondou, T., Ayabe, T., Tamura, H.: On the radial vibration of ball bearings: computer simulation. Trans. Jpn. Soc. Mech. Eng. C 50, 1703–1708 (1984)

    Article  Google Scholar 

  22. Tiwari, M., Gupta, K., Prakash, O.: Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. J. Sound Vib. 238, 723–756 (2000)

    Article  Google Scholar 

  23. Wang, F., Jing, M., Yi, J., Dong, G., Liu, H., Ji, B.: Dynamic modelling for vibration analysis of a cylindrical roller bearing due to localized defects on raceways. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 229, 39–64 (2014)

    Google Scholar 

  24. Hess, D.P., Soom, A., Hess, D.P.: Normal vibrations and friction under harmonic loads: part II—rough planar contacts. J. Tribol. 113, 87–92 (1991)

    Article  Google Scholar 

  25. Zhang, Z., Chen, Y.: Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential. Appl. Math. Mech. 35, 423–436 (2014)

    Article  MathSciNet  Google Scholar 

  26. Hou, L., Chen, Y., Fu, Y., Chen, H., Lu, Z., Liu, Z.: Application of the HB-AFT method to the primary resonance analysis of a dual-rotor system. Nonlinear Dyn. 88(4), 2531–2551 (2017)

    Article  Google Scholar 

  27. Wang, N., Jiang, D., Behdinan, K.: Vibration response analysis of rubbing faults on a dual-rotor bearing system. Arch. Appl. Mech. 87(336), 1–17 (2017)

    Google Scholar 

  28. Li, H.L., Chen, Y.S., Hou, L., Zhang, Z.Y.: Periodic response analysis of a misaligned rotor system by harmonic balance method with alternating frequency/time domain technique. Sci. China Technol. Sci. 59, 1717–1729 (2016)

    Article  Google Scholar 

  29. Bai, C., Xu, Q.: Dynamic model of ball bearings with internal clearance and waviness. J. Sound Vib. 294, 23–48 (2006)

    Article  Google Scholar 

  30. Aktürk, N., Uneeb, M., Gohar, R.: The effects of number of balls and preload on vibrations associated with ball bearings. J. Tribol. 119, 747–753 (1997)

    Article  Google Scholar 

  31. Zhang, X., Han, Q., Peng, Z., Chu, F.: A new nonlinear dynamic model of the rotor-bearing system considering preload and varying contact angle of the bearing. Commun. Nonlinear Sci. Numer. Simul. 22, 821–841 (2015)

    Article  Google Scholar 

  32. Yang, Y., Ren, X., Qin, W., Wu, Y., Zhi, X.: Analysis on the nonlinear response of cracked rotor in hover flight. Nonlinear Dyn. 61, 183–192 (2010)

    Article  MATH  Google Scholar 

  33. Hou, L., Chen, Y.S., Li, Z.G.: SO. Astronautics. Constant-excitation caused response in a class of parametrically excited systems with two degrees of freedom. Acta Phys. Sin. 63, 134501–134537 (2014)

    Google Scholar 

  34. Hou, L., Chen, Y., Cao, Q., Zhang, Z.: Turning maneuver caused response in an aircraft rotor-ball bearing system. Nonlinear Dyn. 79, 229–240 (2015)

    Article  Google Scholar 

  35. Hou, L., Chen, Y., Lu, Z., Li, Z.: Bifurcation analysis for 2:1 and 3:1 super-harmonic resonances of an aircraft cracked rotor system due to maneuver load. Nonlinear Dyn. 81(1–2), 531–547 (2015)

    Article  MATH  Google Scholar 

  36. Zhao, C., Yu, X., Huang, Q., Ge, S., Gao, X.: Analysis on the load characteristics and coefficient of friction of angular contact ball bearing at high speed. Tribol. Int. 87, 50–56 (2015)

    Article  Google Scholar 

  37. Hou, L., Chen, Y.S.: Analysis of 1/2 sub-harmonic resonance in a maneuvering rotor system. Sci. China Technol. Sci. 57, 203–209 (2014)

    Article  Google Scholar 

  38. Liao, N.T., Lin, J.F.: A new method for the analysis of deformation and load in a ball bearing with variable contact angle. J. Mech. Des. 123, 304–312 (2001)

    Article  Google Scholar 

  39. Chiang, H.W.D., Hsu, C.N., Tu, S.H.: Rotor-bearing analysis for turbomachinery single and dual-rotor systems. J. Propuls. Power 20, 1096–1104 (2004)

    Article  Google Scholar 

  40. Lu, Z., Hou, L., Chen, Y., Sun, C.: Nonlinear response analysis for a dual-rotor system with a breathing transverse crack in the hollow shaft. Nonlinear Dyn. 83, 169–185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, H., Chen, Y.: Analysis on nonlinear dynamic properties of dual-rotor system. J. Harbin Inst. Technol. (New Series) 22, 46–54 (2015)

    Google Scholar 

  42. Aero-engine Design Manual Compiling Committee: aero-engine design manual 19th part: rotor dynamics and whole-engine vibration. Aviation Industry Press, Beijing, pp. 57–130 (2000)

  43. Hou, L., Chen, Y.: Dynamical simulation and load control of a Jeffcott rotor system in Herbst maneuvering flight. J. Vib. Control 22, 412–425 (2016)

    Article  MathSciNet  Google Scholar 

  44. Upadhyay, S.H., Harsha, S.P., Jain, S.C.: Analysis of nonlinear phenomena in high speed ball bearings due to radial clearance and unbalanced rotor effects. J. Vib. Control 16, 65–88 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports from the Shandong Province Natural Science Foundation, China (Grant ZR2018QA005, ZR2016AP06), National Key Basic Research Program (973 Program) of China (Grant No. 2015CB057400) and China Postdoctoral Science Foundation (Grant No. 2017M622259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Finite element matrices:

$$\begin{aligned} \mathbf{K}_T^{es}= & {} \frac{EI}{L^{3}} \left[ {{\begin{array}{cccc} {K_{B1} }&{}\quad &{}\quad &{}\quad \\ 0&{}\quad {K_{B1} }&{}\quad {symm}&{}\quad \\ {-K_{B1} }&{}\quad 0&{}\quad {K_{B1} }&{}\quad \\ 0&{}\quad {-K_{B1} }&{}\quad 0&{}\quad {K_{B1} } \\ \end{array} }} \right] , \quad \mathbf{M}_T^{es} =\frac{\rho L}{(1+\varphi _s )^{2}} \left[ {{\begin{array}{cccc} {M_{T1} }&{}\quad &{}\quad &{}\quad \\ 0&{}\quad {M_{T1} }&{}\quad {symm}&{}\quad \\ {M_{T3} }&{}\quad 0&{}\quad {M_{T1} }&{}\quad \\ 0&{}\quad {M_{T3} }&{}\quad 0&{}\quad {M_{T1} } \\ \end{array} }} \right] ,\\ \mathbf{M}_R^{es}= & {} \frac{\rho L}{(1+\varphi _s )^{2}}(\frac{r_\rho }{L})^{2} \left[ {{\begin{array}{cccc} {M_{R1} }&{}\quad &{}\quad &{}\quad \\ 0&{}\quad {M_{R1} }&{}\quad {symm}&{}\quad \\ {-M_{R1} }&{}\quad 0&{}\quad {M_{R1} }&{}\quad \\ 0&{}\quad {-M_{R1} }&{}\quad 0&{}\quad {M_{R1} } \\ \end{array} }} \right] , \quad {\begin{array}{l} {K_{B1} =12/(1+\varphi _s ),} \\ {M_{T1} =13/35+7/10\varphi _s +1/3\varphi _s^2,} \\ {M_{T3} =9/70+3/10\varphi _s +1/6\varphi _s^2,} \\ {\begin{array}{l} M_{R1} =6/5,\quad r_\rho =\sqrt{I^{e}/A}, \\ \varphi _s =12EI/(\upmu AGL^{2}), \\ G=E/2(1+\upsilon ). \\ \end{array}} \\ \end{array}} \end{aligned}$$

In the appendix, E is Young’s modulus, I is the moment of inertias, \(\rho \) is density, A is the cross-sectional area of the shaft element,L is length of the shaft element, G is the shear modulus, \(\upsilon \) is Poisson’s ratio and \(\upmu \) is the shear coefficient of section.

Appendix B

See Figs.  and 11.

Fig. 10
figure 10

Mode diagram when \(\Omega =\omega _{1}\)

Fig. 11
figure 11

Mode diagram when \(\Omega =\omega _{2}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Wang, X., Hou, L. et al. Nonlinear response analysis for an aero engine dual-rotor system coupled by the inter-shaft bearing. Arch Appl Mech 89, 1275–1288 (2019). https://doi.org/10.1007/s00419-018-01501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-01501-0

Keywords

Navigation