Skip to main content
Log in

Switching from active to non-active states in a birhythmic conductance-based neuronal model under electromagnetic induction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider a conductance-based neuronal model under the action of electromagnetic induction on the membrane potential. We focus on the impact of the magnetic flux on the membrane potential using theoretical methods (such as the harmonic and energy balance methods) and numerical methods (such as the bifurcation diagram and Lyapunov exponent). The strength of the electromagnetic induction is considered as the control parameter. Thus, the system can switch from bistable to monostable behavior at the first critical value of the control parameter. This is done by suppressing the active mode of the neuron and maintaining subthreshold mode until it achieved a second critical value of the control parameter for a quiescent mode. Improving the conductance-based neuronal model by adding electromagnetic induction effects relates different steps in the generation of complex forms of action potential (depolarization) such as spiking, bursting, chaos; and the regulation of the system by the switching to subthreshold oscillations (repolarization) or to a stable state (quiescent state) after a brief phase of the dynamic below the quiescent state (hyperpolarization).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data from simulations that support the findings of this study are available on request from the corresponding author, RY.

References

  1. Faraci, F.: The 60th anniversary of the Hodgkin-Huxley model: a critical assessment from a historical and modeller’s viewpoint, Msc thesis. University of Leiden (2013)

  2. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117, 500–544 (1952)

    Article  Google Scholar 

  3. Moris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35, 193–213 (1981)

    Article  Google Scholar 

  4. Chay, T.R.: Chaos in a three-variable model of an excitable cell. Physica D 16, 233–242 (1985)

    Article  MATH  Google Scholar 

  5. Wilson, H.R.: Simplified dynamics of human and mammalian neocortical neurons. J. Theor. Biol. 200, 375–388 (1999)

    Article  Google Scholar 

  6. Bao, H., Zhu, D., Liu, W.B., Xu, Q., Chen, M., Bao, B.C.: Memristor synapse-based Morris–Lecar model: Bifurcation analysis and FPGA-based validations for periodic and chaotic bursting/ spiking firings. Int. J. Bifurc. Chaos 30, 2050045 (2020)

    Article  MATH  Google Scholar 

  7. Xu, Q., Tan, X., Zhu, D., Bao, H., Hu, Y.H., Bao, B.C.: Bifurcations to bursting and spiking in the Chay neuron and their validation in a digital circuit. Chaos Solitons Fractals 141, 110353 (2020)

    Article  MathSciNet  Google Scholar 

  8. Tagne Nkounga, I.B., Moukam Kakmeni, F.M., Camara, B.I., Yamapi, R.: Controling switching between birhythmic states in a new conductance-based bursting neuronal model. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-021-07134-3

    Article  Google Scholar 

  9. Wang, Y., Ma, J., Xu, Y., Wu, F.Q., Zhou, P.: The electrical activities of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurc. Chaos 27, 1750030 (2017)

    Article  MATH  Google Scholar 

  10. Ye, W.J., Mai, W.D., Hu, G.W.: Effects of the electromagnetic radiation on cognitive performance: a model study. Nonlinear Dyn. 93, 2473–2485 (2018)

    Article  Google Scholar 

  11. Yang, Y.M., Ma, J., Xu, Y., Jia, Y.: Energy dependence on discharge mode of Izhikevich neuron driven by external stimulus under electromagnetic induction. Cogn. Neurodyn. 15, 265–277 (2020)

    Article  Google Scholar 

  12. Lv, M., Wang, C.N., Ren, G.D., Ma, J., Song, X.L.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  13. Carpenter, C.J.: Electromagnetic induction in terms of the Maxwell force instead of magnetic flux. IEEE Proc. Sci. Meas. Technol. 146, 182–193 (1999)

    Article  Google Scholar 

  14. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  15. Wu, F.Q., Wang, C.N., Xu, Y., Jun, M.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6: Article no. 28 (2016)

  16. Parastesh, F., Rajagopal, K., Karthikeyan, A., Alsaedi, A., Hayat, T., Pham, V.T.: Complex dynamics of a neuron model with discontinuous magnetic induction and exposed to external radiation. Cogn Neurodyn 12, 607–614 (2018)

    Article  Google Scholar 

  17. Ge, M.Y., Jia, Y., Xu, Y., Yang, L.J.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn 91, 515–523 (2018)

    Article  Google Scholar 

  18. Jin, W.Y., Wang, A., Ma, J., Lin, Q.: Effects of electromagnetic induction and noise on the regulation of sleep wake cycle. Sci. China Technol. Sci. 62, 2113–2119 (2019)

    Article  Google Scholar 

  19. Kafraj, M.S., Parastesh, F., Jafari, S.: Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos Solitons Fractals 137, 109782 (2020)

    Article  MathSciNet  Google Scholar 

  20. An, X.L., Qiao, S.: The hidden, period-adding, mixed-mode oscillations and control in a HR neuron under electromagnetic induction. Chaos Solitons Fractals 143, 110587 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goulefack, L.M., Chamgoue, A.C., Anteneodo, C., et al.: Stability analysis of the Hindmarsh-Rose neuron under electromagnetic induction. Nonlinear Dyn. 108, 2627–2642 (2022). https://doi.org/10.1007/s11071-022-07331-8

    Article  Google Scholar 

  22. Tankou Tagne, A.S., Takembo, C.N., Ben-Bolie, H.G., Owona Ateba, P.: Localized nonlinear excitations in diffusive memristor-based neuronal networks. PLoS ONE 14(6), e 0214989 (2019). https://doi.org/10.1371/journal.pone.0214989

    Article  Google Scholar 

  23. Etémé, A.S., Tabi, C.B., Mohamadou, A.: Firing and synchronization modes in neural network under magnetic stimulation. Commun. Nonlinear Sci. Numer. Simul. (2019). https://doi.org/10.1016/j.cnsns.2019.01.004

    Article  MathSciNet  MATH  Google Scholar 

  24. Tabi, C.B., Etem, A.S., Mohamadou, A., Kofane, T.C.: Unstable discrete modes in Hindmarsh-Rose neural networks under magnetic flow effect. Chaos Solitons Fract. (2019). https://doi.org/10.1016/j.chaos.2019.03.028

    Article  MathSciNet  MATH  Google Scholar 

  25. FitzHugh, R.: Impulses and physiological states in theoretical model of nerve membrane. Biophys J 1, 445–466 (1961)

    Article  Google Scholar 

  26. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)

    Article  Google Scholar 

  27. Li, Q.D., Zeng, H.Z., Li, J.: Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 79, 2295–2308 (2015)

    Article  MathSciNet  Google Scholar 

  28. Venkatesan, A., Lakshmanan, M.: Bifurcation and chaos in the double-well Duffing-Van der Pol oscillator: numerical and analytical studies. Phys. Rev. E 6321, 6330–6356 (1997)

    MathSciNet  Google Scholar 

  29. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  30. Ghosh, P., Sen, S., Riaz, S., Ray, D.S.: Controlling birhythmicity in a self-sustained oscillator by time-delayed feedback. Phys. Rev. E 83, 036205 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yamapi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagne Nkounga, I.B., Goulefack, L.M., Yamapi, R. et al. Switching from active to non-active states in a birhythmic conductance-based neuronal model under electromagnetic induction. Nonlinear Dyn 111, 771–788 (2023). https://doi.org/10.1007/s11071-022-07842-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07842-4

Keywords

Navigation