Skip to main content
Log in

Effects of spike-time-dependent plasticity on stochastic resonance in excitatory-inhibitory neuronal networks

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The phenomenon in which the response of a neuronal network to a weak signal is significantly enhanced in moderate noise is known as stochastic resonance (SR). Most of the previous studies on the transmission of signals by networks have been based on static synaptic connections, whereas dynamic synaptic connections modified by spike-time-dependent plasticity (STDP) are the basis of learning and memory in the nervous system. In this paper, we explore the phenomenon of SR in a neuronal network consisting of different ratios of excitatory vertebral neurons and inhibitory interneurons. The equivalent circuit method was employed to assess the average energy efficiency of the network. The differences in signal response before and after the introduction of STDP were compared for purely excitatory, purely inhibitory and excitatory-inhibitory networks, respectively. It was found that excitatory STDP promotes the network's response to weak signals, while inhibitory STDP has the opposite effect. The introduction of the inhibitory STDP makes the inhibitory network insensitive to the modulation of the coupling strength and increases its robustness. Furthermore, in the excitatory-inhibitory network, we found that STDP had little effect on the overall signalling of the network, and that the network's response to weak signals was more stable. Our findings contribute to the understanding of the importance of excitatory-inhibitory balance in ensuring accurate transmission and processing of information and provide new insights into the role of STDP in neuronal information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

No data were used in the studies described in this article.

References

  1. Neiman, A., Silchenko, A., Anishchenko, V., Schimansky-Geier, L.: Stochastic resonance: noise-enhanced phase coherence. Phys. Rev. E 58, 7118 (1998)

    Article  Google Scholar 

  2. Collins, J.J., Imhoff, T.T., Grigg, P.: Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J. Neurophysiol. 76, 642–645 (1996)

    Article  Google Scholar 

  3. Wang, G.W., Wu, Y., Xiao, F.L., Ye, Z.Q., Jia, Y.: Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction. Physica A 598 (2022).

  4. Gang, H., Ditzinger, T., Ning, C.-Z., Haken, H.: Stochastic resonance without external periodic force. Phys. Rev. Lett. 71, 807 (1993)

    Article  Google Scholar 

  5. Liu, C., Yu, D., Li, T., Wang, X., Xie, Y., Jia, Y.: Effects of neuronal morphology and time delay on inverse stochastic resonance in two-compartment neuron model. Phys. Lett. A 493, 129268 (2024)

    Article  Google Scholar 

  6. Li, T.Y., Yu, D., Wu, Y., Ding, Q.M., Jia, Y.: Stochastic resonance in the small-world networks with higher order neural motifs interactions. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01139-w

    Article  Google Scholar 

  7. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995)

    Article  Google Scholar 

  8. Xiao, F., Fu, Z., Jia, Y., Yang, L.: Resonance effects in neuronal-astrocyte model with ion channel blockage. Chaos Solit. Fract. 166, 112969 (2023)

    Article  MathSciNet  Google Scholar 

  9. Yu, D., Wang, G., Li, T., Ding, Q., Jia, Y.: Filtering properties of Hodgkin-Huxley neuron on different time-scale signals. Commun. Nonlinear Sci. Numer. Simul. 117, 106894 (2023)

    Article  MathSciNet  Google Scholar 

  10. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34, 10–16 (1982)

    Article  Google Scholar 

  11. Liang, X., Dhamala, M., Zhao, L., Liu, Z.: Phase-disorder-induced double resonance of neuronal activity. Phys. Rev. E 82, 010902 (2010)

    Article  Google Scholar 

  12. Destexhe, A., Contreras, D.: Neuronal computations with stochastic network states. Science 1979(314), 85–90 (2006)

    Article  MathSciNet  Google Scholar 

  13. Gluckman, B.J., Netoff, T.I., Neel, E.J., Ditto, W.L., Spano, M.L., Schiff, S.J.: Stochastic resonance in a neuronal network from mammalian brain. Phys. Rev. Lett. 77, 4098 (1996)

    Article  Google Scholar 

  14. Hansel, D., Sompolinsky, H.: Synchronization and computation in a chaotic neural network. Phys. Rev. Lett. 68, 718 (1992)

    Article  Google Scholar 

  15. Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544–557 (2009)

    Article  Google Scholar 

  16. Baysal, V., Yılmaz, E.: Chaotic signal induced delay decay in Hodgkin-Huxley Neuron. Appl. Math. Comput. 411, 126540 (2021)

    MathSciNet  Google Scholar 

  17. Yu, D., Zhou, X., Wang, G., Ding, Q., Li, T., Jia, Y.: Effects of chaotic activity and time delay on signal transmission in FitzHugh-Nagumo neuronal system. Cogn. Neurodyn. 16, 887–897 (2022)

    Article  Google Scholar 

  18. Baysal, V., Erkan, E., Yilmaz, E.: Impacts of autapse on chaotic resonance in single neurons and small-world neuronal networks. Phil. Trans. R. Soc. A 379, 20200237 (2021)

    Article  Google Scholar 

  19. Wang, H., Chen, Y.: Response of autaptic Hodgkin-Huxley neuron with noise to subthreshold sinusoidal signals. Physica A 462, 321–329 (2016)

    Article  MathSciNet  Google Scholar 

  20. Yilmaz, E., Uzuntarla, M., Ozer, M., Perc, M.: Stochastic resonance in hybrid scale-free neuronal networks. Physica A 392, 5735–5741 (2013)

    Article  MathSciNet  Google Scholar 

  21. Yu, D., Wang, G., Ding, Q., Li, T., Jia, Y.: Effects of bounded noise and time delay on signal transmission in excitable neural networks. Chaos Solit. Fract. 157, 111929 (2022)

    Article  MathSciNet  Google Scholar 

  22. Kawaguchi, M., Mino, H., Durand, D.M.: Stochastic resonance can enhance information transmission in neural networks. IEEE Trans. Biomed. Eng. 58, 1950–1958 (2011)

    Article  Google Scholar 

  23. Perc, M.: Stochastic resonance on weakly paced scale-free networks. Phys. Rev. E 78, 036105 (2008)

    Article  Google Scholar 

  24. Perc, M.: Stochastic resonance on excitable small-world networks via a pacemaker. Phys. Rev. E 76, 066203 (2007)

    Article  Google Scholar 

  25. Yu, H., Li, K., Guo, X., Wang, J., Deng, B., Liu, C.: Firing rate oscillation and stochastic resonance in cortical networks with electrical–chemical synapses and time delay. IEEE Trans. Fuzzy Syst. 28, 5–13 (2018)

    Article  Google Scholar 

  26. Debanne, D., Inglebert, Y.: Spike timing-dependent plasticity and memory. Curr. Opin. Neurobiol. 80, 102707 (2023)

    Article  Google Scholar 

  27. Gerstner, W., Kempter, R., Van Hemmen, J.L., Wagner, H.: A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996)

    Article  Google Scholar 

  28. Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 1979(275), 213–215 (1997)

    Article  Google Scholar 

  29. Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)

    Article  Google Scholar 

  30. Hu, X., Wu, Y., Ding, Q., Xie, Y., Ye, Z., Jia, Y.: Synchronization of scale-free neuronal network with small-world property induced by spike-timing-dependent plasticity under time delay. Physica D 460, 134091 (2024)

    Article  MathSciNet  Google Scholar 

  31. Tzounopoulos, T., Rubio, M.E., Keen, J.E., Trussell, L.O.: Coactivation of pre-and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity. Neuron 54, 291–301 (2007)

    Article  Google Scholar 

  32. Feldman, D.E., Brecht, M.: Map plasticity in somatosensory cortex. Science 310, 810–815 (2005)

    Article  Google Scholar 

  33. Li, T., Wu, Y., Yang, L., Zhan, X., Jia, Y.: Spike-timing-dependent plasticity enhances chaotic resonance in small-world network. Physica A 606, 128069 (2022)

    Article  MathSciNet  Google Scholar 

  34. Lobov, S.A., Zhuravlev, M.O., Makarov, V.A., Kazantsev, V.B.: Noise enhanced signaling in STDP driven spiking-neuron network. Math. Model. Nat. Phenom. 12, 109–124 (2017)

    Article  MathSciNet  Google Scholar 

  35. Li, X., Zhang, J., Small, M.: Self-organization of a neural network with heterogeneous neurons enhances coherence and stochastic resonance. Chaos 19, (2009)

  36. Xie, H.J., Gong, Y.B., Wang, B.Y.: Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks. Chaos Solit. Fract. 108, 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  37. Li, X., Small, M.: Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure. Chaos 22, (2012)

  38. Madadi Asl, M., Valizadeh, A., Tass, P.A.: Dendritic and axonal propagation delays determine emergent structures of neuronal networks with plastic synapses. Sci. Rep. 7, 39682 (2017)

    Article  Google Scholar 

  39. Madadi Asl, M., Valizadeh, A., Tass, P.A.: Decoupling of interacting neuronal populations by time-shifted stimulation through spike-timing-dependent plasticity. PLoS Comput. Biol. 19, e1010853 (2023)

    Article  Google Scholar 

  40. D’amour, J.A., Froemke, R.C.: Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron 86, 514–528 (2015)

    Article  Google Scholar 

  41. Di Lorenzo, F., Ponzo, V., Motta, C., Bonnì, S., Picazio, S., Caltagirone, C., Bozzali, M., Martorana, A., Koch, G.: Impaired spike timing dependent cortico-cortical plasticity in Alzheimer’s disease patients. J. Alzheimer’s Dis. 66, 983–991 (2018)

    Article  Google Scholar 

  42. Attwell, D., Laughlin, S.B.: An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001)

    Article  Google Scholar 

  43. Siekevitz, P.: Producing neuronal energy. Science 306, 410–411 (2004)

    Article  Google Scholar 

  44. Magistretti, P.J.: Low-cost travel in neurons. Science 325, 1349–1351 (2009)

    Article  Google Scholar 

  45. Xu, L., Qi, G., Ma, J.: Modeling of memristor-based Hindmarsh-Rose neuron and its dynamical analyses using energy method. Appl. Math. Model. 101, 503–516 (2022)

    Article  MathSciNet  Google Scholar 

  46. Sun, J., Li, C., Wang, Z., Wang, Y.: Dynamic analysis of HR-FN-HR neural network coupled by locally active hyperbolic memristors and encryption application based on Knuth-Durstenfeld algorithm. Appl. Math. Model. 121, 463–483 (2023)

    Article  MathSciNet  Google Scholar 

  47. Xie, Y., Ye, Z.Q., Li, X.N., Wang, X.Q., Jia, Y.: A novel memristive neuron model and its energy characteristics. Cogn. Neurodyn. (2024). https://doi.org/10.1007/s11571-024-10065-5

    Article  Google Scholar 

  48. Wang, Y., Wang, R., Xu, X.: Neural energy supply-consumption properties based on Hodgkin-Huxley model. Neural. Plast. 2017, (2017)

  49. Wang, Y., Xu, X., Wang, R.: The place cell activity is information-efficient constrained by energy. Neural Netw. 116, 110–118 (2019)

    Article  Google Scholar 

  50. Wang, Y., Xu, X., Zhu, Y., Wang, R.: Neural energy mechanism and neurodynamics of memory transformation. Nonlinear Dyn. 97, 697–714 (2019)

    Article  Google Scholar 

  51. Moujahid, A., d’Anjou, A., Torrealdea, F.J., Torrealdea, F.: Energy and information in Hodgkin-Huxley neurons. Phys. Rev. E 83, 031912 (2011)

    Article  MathSciNet  Google Scholar 

  52. Yu, L., Yu, Y.: Energy-efficient neural information processing in individual neurons and neuronal networks. J. Neurosci. Res. 95, 2253–2266 (2017)

    Article  Google Scholar 

  53. Liu, Y., Yue, Y., Yu, Y., Liu, L., Yu, L.: Effects of channel blocking on information transmission and energy efficiency in squid giant axons. J. Comput. Neurosci. 44, 219–231 (2018)

    Article  MathSciNet  Google Scholar 

  54. Yu, D., Yang, L., Zhan, X., Fu, Z., Jia, Y.: Logical stochastic resonance and energy consumption in stochastic Hodgkin-Huxley neuron system. Nonlinear Dyn. 111, 6757–6772 (2023)

    Article  Google Scholar 

  55. Yu, D., Zhan, X., Yang, L., Jia, Y.: Theoretical description of logical stochastic resonance and its enhancement: Fast Fourier transform filtering method. Phys. Rev. E 108, 014205 (2023)

    Article  MathSciNet  Google Scholar 

  56. Wang, S., Wang, W., Liu, F.: Propagation of firing rate in a feed-forward neuronal network. Phys. Rev. Lett. 96, 018103 (2006)

    Article  Google Scholar 

  57. Fox, R.F.: Stochastic versions of the Hodgkin-Huxley equations. Biophys. J. 72, 2068–2074 (1997)

    Article  Google Scholar 

  58. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  59. Meinecke, D.L., Peters, A.: GABA immunoreactive neurons in rat visual cortex. J. Comp. Neurol. 261, 388–404 (1987)

    Article  Google Scholar 

  60. Wang, Y., Shi, X., Si, B., Cheng, B., Chen, J.: Synchronization and oscillation behaviors of excitatory and inhibitory populations with spike-timing-dependent plasticity. Cogn. Neurodyn. 17, 715–727 (2023)

    Article  Google Scholar 

  61. Yu, H., Guo, X., Wang, J., Liu, C., Deng, B., Wei, X.: Adaptive stochastic resonance in self-organized small-world neuronal networks with time delay. Commun. Nonlinear Sci. Numer. Simul. 29, 346–358 (2015)

    Article  MathSciNet  Google Scholar 

  62. Lobov, S., Simonov, A., Kastalskiy, I., Kazantsev, V.: Network response synchronization enhanced by synaptic plasticity. Eur. Phys. J. Spec. Top. 225, 29–39 (2016)

    Article  Google Scholar 

  63. Ding, Q., Jia, Y.: Effects of temperature and ion channel blocks on propagation of action potential in myelinated axons. Chaos 31, (2021)

  64. Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  65. Wang, X., Yu, D., Li, T., Jia, Y.: Logistic stochastic resonance in the Hodgkin-Huxley neuronal system under electromagnetic induction. Physica A 630, 129247 (2023)

    Article  MathSciNet  Google Scholar 

  66. Yu, D., Wu, Y., Yang, L., Zhao, Y., Jia, Y.: Effect of topology on delay-induced multiple resonances in locally driven systems. Physica A 609, 128330 (2023)

    Article  MathSciNet  Google Scholar 

  67. Udhayakumar, K., Shanmugasundaram, S., Kashkynbayev, A., Janani, K., Rakkiyappan, R.: Saturated and asymmetric saturated impulsive control synchronization of coupled delayed inertial neural networks with time-varying delays. Appl. Math. Model. 113, 528–544 (2023)

    Article  MathSciNet  Google Scholar 

  68. Yang, F., Ma, J.: A controllable photosensitive neuron model and its application. Opt. Laser Technol. 163, 109335 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under No. 12175080, also financially supported by self-determined research funds of CCNU from the colleges’ basic research and operation of MOE under No. CCNU22JC009.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

XW, DY and TL contributed to conceptualization, software, writing-original draft preparation; XL, WH and XZ contributed to methodology and visualization; and YJ supervised the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ya Jia.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yu, D., Li, T. et al. Effects of spike-time-dependent plasticity on stochastic resonance in excitatory-inhibitory neuronal networks. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09682-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09682-w

Keywords

Navigation