Skip to main content

Whole Cell Patch Clamp Electrophysiology in Human Neuronal Cells

  • Protocol
  • First Online:
Stem Cell-Based Neural Model Systems for Brain Disorders

Abstract

Whole cell patch clamp recording techniques are commonly used to assay membrane excitability, ion channel function, and synaptic activity in neurons. However, assaying these functional properties of human neurons remains difficult because of the difficulty in obtaining human neuronal cells. Recent advents in stem cell biology, especially the development of the induced pluripotent stem cells, made it possible to generate human neuronal cells in both 2-dimensional (2D) monolayer cultures and 3D brain-organoid cultures. Here, we describe the whole cell patch clamp methods of recording neuronal physiology from human neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fenwick EM, Marty A, Neher E (1982) A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol 331:577–597. Epub 1982/10/01. https://doi.org/10.1113/jphysiol.1982.sp014393. PubMed PMID: 6296371; PMCID: PMC1197770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100. Epub 1981/08/01. https://doi.org/10.1007/BF00656997

    Article  CAS  PubMed  Google Scholar 

  3. Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472. Epub 1984/01/01. https://doi.org/10.1146/annurev.ph.46.030184.002323

    Article  CAS  PubMed  Google Scholar 

  4. Vyklický L Sr (1992) Ervin Neher and Bert Sakmann, 1991 Nobel prize laureates for physiology and medicine. Ion channels and the patch clamp technic. Cas Lek Cesk 131(2):33–41. Epub 1992/02/17

    PubMed  Google Scholar 

  5. Todman D (2008) John Eccles (1903–97) and the experiment that proved chemical synaptic transmission in the central nervous system. J Clin Neurosci 15(9):972–977. https://doi.org/10.1016/j.jocn.2008.01.001

    Article  PubMed  Google Scholar 

  6. Chanda S, Ang CE, Davila J, Pak C, Mall M, Lee QY, Ahlenius H, Jung SW, Sudhof TC, Wernig M (2014) Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Reports 3(2):282–296. Epub 2014/09/26. https://doi.org/10.1016/j.stemcr.2014.05.020. PubMed PMID: 25254342; PMCID: PMC4176533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Halikere A, Popova D, Scarnati MS, Hamod A, Swerdel MR, Moore JC, Tischfield JA, Hart RP, Pang ZP (2020) Addiction associated N40D mu-opioid receptor variant modulates synaptic function in human neurons. Mol Psychiatry 25(7):1406–1419. Epub 2019/09/05. https://doi.org/10.1038/s41380-019-0507-0. PubMed PMID: 31481756; PMCID: PMC7051890

    Article  CAS  PubMed  Google Scholar 

  8. Pak C, Danko T, Mirabella VR, Wang J, Liu Y, Vangipuram M, Grieder S, Zhang X, Ward T, Huang YA, Jin K, Dexheimer P, Bardes E, Mitelpunkt A, Ma J, McLachlan M, Moore JC, Qu P, Purmann C, Dage JL, Swanson BJ, Urban AE, Aronow BJ, Pang ZP, Levinson DF, Wernig M, Sudhof TC (2021) Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived NRXN1-mutant neurons. Proc Natl Acad Sci U S A 118(22). Epub 2021/05/27. https://doi.org/10.1073/pnas.2025598118. PubMed PMID: 34035170; PMCID: PMC8179243

  9. Pak C, Danko T, Zhang Y, Aoto J, Anderson G, Maxeiner S, Yi F, Wernig M, Sudhof TC (2015) Human neuropsychiatric disease modeling using conditional deletion reveals synaptic transmission defects caused by heterozygous mutations in NRXN1. Cell Stem Cell 17(3):316–328. Epub 2015/08/19. https://doi.org/10.1016/j.stem.2015.07.017. PubMed PMID: 26279266; PMCID: PMC4560990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang L, Mirabella VR, Dai R, Su X, Xu R, Jadali A, Bernabucci M, Singh I, Chen Y, Tian J, Jiang P, Kwan KY, Pak C, Liu C, Comoletti D, Hart RP, Chen C, Sudhof TC, Pang ZP (2022) Analyses of the autism-associated neuroligin-3 R451C mutation in human neurons reveal a gain-of-function synaptic mechanism. Mol Psychiatry. Epub 2022/10/26. https://doi.org/10.1038/s41380-022-01834-x. PubMed PMID: 36280753

  11. Yi F, Danko T, Botelho SC, Patzke C, Pak C, Wernig M, Sudhof TC (2016) Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science 352(6286):aaf2669. Epub 2016/03/12. https://doi.org/10.1126/science.aaf2669. PubMed PMID: 26966193; PMCID: PMC4901875

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, Marro S, Patzke C, Acuna C, Covy J, Xu W, Yang N, Danko T, Chen L, Wernig M, Sudhof TC (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78(5):785–798. Epub 2013/06/15. https://doi.org/10.1016/j.neuron.2013.05.029. PubMed PMID: 23764284; PMCID: PMC3751803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  14. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Südhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223. https://doi.org/10.1038/nature10202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu B-Y, Weick JP, Yu J, Ma L-X, Zhang X-Q, Thomson JA, Zhang S-C (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci 107(9):4335–4340. https://doi.org/10.1073/pnas.0910012107

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chandrasekaran A, Avci HX, Ochalek A, Rösingh LN, Molnár K, László L, Bellák T, Téglási A, Pesti K, Mike A, Phanthong P, Bíró O, Hall V, Kitiyanant N, Krause K-H, Kobolák J, Dinnyés A (2017) Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells. Stem Cell Res 25:139–151. https://doi.org/10.1016/j.scr.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  17. Muñoz-Sanjuán I, Brivanlou AH (2002) Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3(4):271–280. https://doi.org/10.1038/nrn786

    Article  CAS  PubMed  Google Scholar 

  18. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280. https://doi.org/10.1038/nbt.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi Y, Kirwan P, Livesey FJ (2012) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 7(10):1836–1846. https://doi.org/10.1038/nprot.2012.116

    Article  CAS  PubMed  Google Scholar 

  20. Halikere A, Popova D, Scarnati MS, Hamod A, Swerdel MR, Moore JC, Tischfield JA, Hart RP, Pang ZP (2019) Addiction associated N40D mu-opioid receptor variant modulates synaptic function in human neurons. Mol Psychiatry 25:1406. https://doi.org/10.1038/s41380-019-0507-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oni EN, Halikere A, Li G, Toro-Ramos AJ, Swerdel MR, Verpeut JL, Moore JC, Bello NT, Bierut LJ, Goate A, Tischfield JA, Pang ZP, Hart RP (2016) Increased nicotine response in iPSC-derived human neurons carrying the CHRNA5 N398 allele. Sci Rep 6:34341. https://doi.org/10.1038/srep34341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scarnati MS, Boreland AJ, Joel M, Hart RP, Pang ZP (2020) Differential sensitivity of human neurons carrying μ opioid receptor (MOR) N40D variants in response to ethanol. Alcohol 87:97. https://doi.org/10.1016/j.alcohol.2020.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu R, Brawner AT, Li S, Liu J-J, Kim H, Xue H, Pang ZP, Kim W-Y, Hart RP, Liu Y, Jiang P (2019) OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of down syndrome. Cell Stem Cell 24(6):908–26.e8. https://doi.org/10.1016/j.stem.2019.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim H, Xu R, Padmashri R, Dunaevsky A, Liu Y, Dreyfus CF, Jiang P (2019) Pluripotent stem cell-derived cerebral organoids reveal human oligodendrogenesis with dorsal and ventral origins. Stem Cell Reports 12(5):890–905. https://doi.org/10.1016/j.stemcr.2019.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen C, Jiang P, Xue H, Peterson SE, Tran HT, McCann AE, Parast MM, Li S, Pleasure DE, Laurent LC, Loring JF, Liu Y, Deng W (2014) Role of astroglia in Down’s syndrome revealed by patient-derived human-induced pluripotent stem cells. Nat Commun 5(1):4430. https://doi.org/10.1038/ncomms5430

    Article  CAS  PubMed  Google Scholar 

  26. Robles DA, Boreland AJ, Pang ZP, Zahn JD (2021) A cerebral organoid connectivity apparatus to model neuronal tract circuitry. Micromachines 12(12). https://doi.org/10.3390/mi12121574

  27. Liu X, Bibineyshvili Y, Robles DA, Boreland AJ, Margolis DJ, Shreiber DI, Zahn JD (2021) Fabrication of a multilayer implantable cortical microelectrode probe to improve recording potential. J Microelectromech Syst 30(4):569–581. https://doi.org/10.1109/JMEMS.2021.3092230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bagley JA, Reumann D, Bian S, Lévi-Strauss J, Knoblich JA (2017) Fused cerebral organoids model interactions between brain regions. Nat Methods 14:743. https://doi.org/10.1038/nmeth.4304. https://www.nature.com/articles/nmeth.4304#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345(6194):1247125

    Article  PubMed  Google Scholar 

  30. Lee C-T, Bendriem RM, Wu WW, Shen R-F (2017) 3D brain organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. J Biomed Sci 24:59. https://doi.org/10.1186/s12929-017-0362-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379. https://doi.org/10.1038/nature12517

    Article  CAS  PubMed  Google Scholar 

  32. Xu R, Boreland AJ, Li X, Erickson C, Jin M, Atkins C, Pang ZP, Daniels BP, Jiang P (2021) Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Reports 16(8):1923–1937. https://doi.org/10.1016/j.stemcr.2021.06.011

    Article  PubMed  PubMed Central  Google Scholar 

  33. Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, Su K, Li S, Lu L, Jacob F, Nguyen PTT, Huh S, Hoke A, Swinford-Jackson SE, Wen Z, Gu X, Pierce RC, Wu H, Briand LA, Chen HI, Wolf JA, Song H, Ming G-l (2020) Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26(5):766–81.e9. https://doi.org/10.1016/j.stem.2020.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Pang lab is supported by NIAAA R01AA023797 and NIMH R21MH126420. A.J.B. was supported by NIGMS T32GM008339 and by NCATS TL1TR003019. The Child Health Institute of New Jersey is supported in part by the Robert Wood Johnson Foundation (grant #74260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping P. Pang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gabriel, R., Boreland, A.J., Pang, Z.P. (2023). Whole Cell Patch Clamp Electrophysiology in Human Neuronal Cells. In: Huang, YW.A., Pak, C. (eds) Stem Cell-Based Neural Model Systems for Brain Disorders. Methods in Molecular Biology, vol 2683. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3287-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3287-1_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3286-4

  • Online ISBN: 978-1-0716-3287-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics