Skip to main content
Log in

Influence of particle size reduction in ball milled rutile TiO2 on the properties of PVDF-HFP/ TiO2 nanocomposite films as dielectric layers for electro adhesive load bearing applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline TiO2particles were prepared by ball milling and effect of milling time on the crystalline size and phase transformation were studied. PVDF-HFP/TiO2 composite films with the milled TiO2 particles were prepared by doctor blade technique. The prepared samples were characterized by XRD, SEM and FTIR spectra. The change in dielectric constant with respect to frequency is studied for the PVDF-HFP/TiO2 composite films. Milling time was determined to influence the dielectric parameters. Electroadhesive films were prepared using these films as dielectric layers and their ability to polarize different materials has been analyzed. Electrostatic clutches were prepared using the PVDF-HFP/TiO2 composite films as dielectric medium sandwiched between a pair of conducting fabric electrodes. These lightweight clutches were tested for their load bearing capacity.The effect of increase in milling time on the structural and morphological parameters of the composite films and hence the dielectric constant influences the load bearing capacity of the prepared electro adhesive clutches. Also, the input voltage and source type were found to impact the load bearing property of the electroadhesive clutch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data will be available from the authors upon request.

References

  1. J. Guo, T. Bamber, J. Singh, D. Manby, P.A. Bingham, L. Justham, J. Petzing, J. Penders, M. Jackson, Experimental study of a flexible and environmentally stable electroadhesive device. Appl. Phys. Lett. 111, 251603 (2017)

    Article  Google Scholar 

  2. J. Guo, T. Bamber, Y. Zhao, M. Chamberlain, L. Justham, M. Jackson, Toward adaptive and intelligent electroadhesives for robotic material handling. IEEE Robotics Automa. Lett. 2(2), 538–545 (2017)

    Article  Google Scholar 

  3. Y.A. Hassan, H. Hu, Current status of polymer nanocomposite dielectrics for high-temperature applications. Composites Part A: Applied Science and Manufacturing. 138, 106064 (2020).

  4. S. Moharana, R.N. Mahaling, “Silver (Ag)-Graphene Oxide (GO) - Poly (vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP) nanostructured composites with high dielectric constant and low dielectric loss.” Chem. Phys. Lett. 680, 31–36 (2017)

    Article  CAS  Google Scholar 

  5. S. Ishaq, F. Kanwal, S. Atiq, M. Moussa, U. Azhar, M. Imran, D. Losic, “Advancing dielectric and ferroelectric properties of piezoelectric polymers by combining graphene and ferroelectric ceramic additives for energy storage applications.” Materials 11, 1553 (2018)

    Article  Google Scholar 

  6. K. Kim, K. Ryu, S. Kang, S. Chang, I. Chung, The effect of silica addition on the properties ofPoly((vinylidene fluoride)-co-hexafluoropropylene)-based polymer electrolytes. Macromol. Chem. Phys. 202, 866–872 (2001)

    Article  CAS  Google Scholar 

  7. K. Kim, J. Kim, K. Ryu, Characteristics of PVdF-HFP/TiO2 composite electrolytes prepared by a phase inversion technique using dimethyl acetamide solvent and water non-solvent. Macromol. Mater. Eng. 291, 1495–1502 (2006)

    Article  CAS  Google Scholar 

  8. K. Prabakaran, S. Mohanty, S.K. Nayak, Influence of surface modified TiO2 nanoparticles on dielectric properties of PVdF–HFP nanocomposites. J Mater Sci: Mater Electron 25, 4590–4602 (2014)

    CAS  Google Scholar 

  9. E. Wierzbicka, M. Domaschke, N. Denisov, D. Fehn, I. Hwang, M. Kaufmann, B. Kunstmann, J. Schmidt, K. Meyer, W. Peukert, P. Schmuki, “Magnéli phases doped with Pt for photocatalytic hydrogen evolution.” ACS Appl Energy Mater. 2(12), 8399–8404 (2019)

    Article  CAS  Google Scholar 

  10. B. Sun, Y. Chen, L. Tao, H. Zhao, G. Zhou, Y. Xia, H. Wang, Y. Zhao, “Nanorods array of SnO2 quantum dots interspersed multiphasetio2 heterojunctions with highly photocatalytic water splitting and self-rechargeable battery-like applications.” ACS Appl. Mater. Interfaces 11(2), 2071–2081 (2019)

    Article  CAS  Google Scholar 

  11. B. Sun, W. Zhao, Y. Liu, P. Chen, White-light-controlled resistive switching and photovoltaic effects in TiO2/ZnO composite nanorods array at room temperature. J Mater Sci: Mater Electron. 25, 4306–4311 (2014)

    CAS  Google Scholar 

  12. J. Guo, T. Bamber, J. Petzing, L. Justham, M. Jackson, Experimental study of relationship between interfacial electroadhesive force andapplied voltage for different substrate materials. Appl. Phys. Lett. 110, 051602 (2017)

    Article  Google Scholar 

  13. S. Conze, I. Veremchuk, M. Reibold, B. Matthey, A. Michaelis, I. Yu Grin, Kinski, Magnéli phases Ti4O7 and Ti8O15 and their carbon nanocomposites via the thermal decomposition-precursor route. J. Solid State Chem (2015). https://doi.org/10.1016/j.jssc.2015.04.037

    Article  Google Scholar 

  14. S. Harada, K. Tanaka, H. Inui, “Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magnèliphases.” J. Appl. Phys. 108, 083703 (2010)

    Article  Google Scholar 

  15. D. Ponnamma, M. Al-Maadeed, Influence of BaTiO3/ white graphene filler synergy on the energy harvesting performance of piezoelectric polymer nanocomposite. Sustain. Energy Fuels (2019). https://doi.org/10.1039/C8SE00519B

    Article  Google Scholar 

  16. A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, P. Wojciechowski, “Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods.” J Nanomater. Article ID 124814, 9 (2014)

    Google Scholar 

  17. N. Ramaiah, V. Raja, C.H. Ramu, Preparation and characterisation of electrolyte filled solid poly (vinylidene difluoride-co-hexafluoropropylene) polymer TiO2 membranes for battery application. Mater. Res. Innov. (2021). https://doi.org/10.1080/14328917.2021.1942406

    Article  Google Scholar 

  18. P. Yan, X. Wu, Y. Yang, D. Wang, C. Zhang, D. He, Composite-porous polymer membrane with reduced crystalline for lithium–ion battery via non-solvent evaporate method. Ionics (2015). https://doi.org/10.1007/s11581-014-1337-3

    Article  Google Scholar 

  19. M. Chellappa, U. Anjaneyulu, G. Manivasagam, U. Vijayalakshmi, Preparation and evaluation of the cytotoxic nature of TiO2nanoparticles by direct contact method. Ind. J. Nano Med. (2015). https://doi.org/10.2147/IJN.S79978

    Article  Google Scholar 

  20. K. Lu, Q. He, L. Chen, B, Ai, J, Xiong “The Comparative PDT Experiment of the Inactivation of HL60 on Modified TiO2 Nanoparticles.” J. Nanomater. Article ID 540247, 8 (2015)

    Google Scholar 

  21. A. Ouda, K. Alosfur, J. Ridha, H. Abud, N. Umran, H. Al-aaraji, A. Madlool, Facile method to synthesis of anatase TiO2 nanorods. J. Phys.: Conf. Series 1032, 012038 (2018)

    Google Scholar 

  22. J. Wang, Z. Shi, X. Wang, X. Mai, R. Fan, H. Liu, X. Wang, Z. Guo, Enhancing dielectric performance of Poly(vinylidene fluoride) nanocomposites via controlled distribution of carbon Nanotubes and barium titanate nanoparticles. Eng. Sci. 4(79–86), 79 (2018)

    Google Scholar 

  23. M. Selvaraj, R. Senthilkumar, R. Balaji, S. Selvasekarapandian, G. Manivasagam, Influence of Graphene Oxide and reduced Graphene Oxide on dielectric properties of PZT/PVDF composite films. AIP Conf. Proc. 2162, 020056-1–020056-7 (2019)

    Google Scholar 

  24. Y. Lee, J. Park, Electrochemicalcharacterstics polymer of electrolytes based on P(Vdf-co-HFP) ionomer of.blend for PLIB. J. Power Sources 97–98, 616 (2001)

    Article  Google Scholar 

  25. P. Devi, K. Ramachandran, Dielectric studies on hybridised PVDF–ZnO nanocomposites. J. Exp. Nanosci. 6, 281 (2011)

    Article  CAS  Google Scholar 

  26. X.Y. Huang, C.Y. Zhi, P.K. Jiang, D. Golberg, Y. Bando, T. Tanaka, Nanotechnology 23, 455705 (2012)

    Article  Google Scholar 

  27. K. Choi, Y. Kim, H. Sun, S. Kim, J. Yoo, I. Park, P. Lee, H. Choi, H. Choi, T. Kim, J. Suhr, Y. Lee, J. Nam, Quantitative electrode design modeling of an electroadhesive lifting device based on the localized charge distribution and interfacial polarization of different objects. ACS Omega 4, 7994–8000 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

JDR: contributed to Analysis, Interpretation and drafting, RR: performed the Analysis and Interpretation of data, BV: contributed in Conception or design of the work, final drafting and revision for important intellectual content, RS, SA and RN involved in all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to B. Vidhya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosario, J.D., Ranjithkumar, R., Vidhya, B. et al. Influence of particle size reduction in ball milled rutile TiO2 on the properties of PVDF-HFP/ TiO2 nanocomposite films as dielectric layers for electro adhesive load bearing applications. J Mater Sci: Mater Electron 33, 25976–25990 (2022). https://doi.org/10.1007/s10854-022-09288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09288-1

Navigation