Skip to main content
Log in

Structural and electrical characterization of bamboo-shaped C–N nanotubes–poly ethylene oxide (PEO) composite films

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We have prepared bamboo-shaped C–N nanotubes–polyethylene oxide (PEO) composite films by solution cast technique and investigated their structural/microstructural and electrical properties and developed a correlation between them. The formation of clean compartmentalized bamboo-shaped C–N nanotubes was confirmed by TEM. SEM investigations revealed a homogeneous dispersion of nanotubes in PEO matrix. Enhanced electrical conductivity was observed for the C–N nanotubes–PEO composites than bare PEO. The conductivity measurements on the C–N nanotubes–PEO composite films with ~20 wt % concentration of C–N nanotubes showed an increase of eight orders (~7.5 × 10−8 to 6.2 S cm−1) of magnitude in conductivity from bare PEO film. Raman spectra showed the stress-free nature of the composites and established the bonding of nanotubes with PEO, which resulted in the variation of Raman parameters. The Raman data of composites corroborate the findings of variation in electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned Carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265:1212–1214

    Article  CAS  Google Scholar 

  • Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater 12:750–753

    Article  CAS  Google Scholar 

  • Ajayan PM, Braun PV, Schadler LS (2003) Nanocomposite science and technology. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Akhtar MS, Park JG, Lee HC, Lee SK, Yang OB (2010) Carbon nanotubes–polyethylene oxide composite electrolyte for solid-state dye-sensitized solar cells. Electrochim Acta 55(7):2418–2423

    Article  Google Scholar 

  • Ali SR, Ma Y, Parajuli RR, Balogun Y, Lai WYC, He H (2007) A nonoxidative sensor based on a self-doped polyaniline/Carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem 79:2583–2587

    Article  CAS  Google Scholar 

  • Assouline E, Lustiger A, Barber AH, Cooper CA, Klein E, Wachtel E, Wagner HD (2003) Nucliation ability of multiwalled carbon nanotubes in polypropylene composites. J Polym Sci Polym Phys Ed 41:520–527

    Article  CAS  Google Scholar 

  • Awasthi K, Awasthi S, Srivastava A, Kamalakaran R, Talapatra S, Ajayan PM, Srivastava ON (2006) Synthesis and characterization of carbon nanotube–polyethylene oxide composites. Nanotechnology 17:5417–5422

    Article  CAS  Google Scholar 

  • Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos A Appl Sci Manufact 34(8):689–694

    Article  Google Scholar 

  • Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) DC and AC conductivity of Carbon nanotubes-polyepoxy composites. Macromolecules 36:5187–5194

    Article  CAS  Google Scholar 

  • Barrau S, Demont P, Maraval C, Bernes A, Lacabanne C (2005) Glass transition temperature depression at the percolation threshold in carbon nanotube–epoxy resin and polypyrrole–epoxy resin composites. Macromol Rapid Comm 26(5):390–394

    Article  CAS  Google Scholar 

  • Chakraborty G, Gupta K, Meikap AK, Babu R, Blau WJ (2011) Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature. J Appl Phys 109:033707–033709

    Article  Google Scholar 

  • Chakraborty G, Gupta K, Rana D, Meikap AK (2012) Effect of multiwalled carbon nanotubes on electrical conductivity and magnetoconductivity of polyaniline. Adv Natl Sci Nanosci Nanotechnol 3:035015 (8 pp)

    Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262

    Article  CAS  Google Scholar 

  • Curran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB, Davey AP, Drury A, McCarthy B, Maier S, Strevens A (1998) A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics. Adv Mater 10:1091–1093

    Article  CAS  Google Scholar 

  • Datsyuk V, Piecourt CG, Dagreou S, Billon L, Dupin JC, Flahaut E, Peigney A, Laurent C (2005) Double walled carbon nanotube/polymer composites via in situ nitroxide mediated polymerisation of amphiphilic block copolymers. Carbon 43:873–876

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Pimenta MA, Eklund PC, Dresselhaus G (2000) Raman scattering in fullerenes and related carbon-based material. In: Weber WH, Merlin R (eds) Raman scattering in material sciences, Springer Series in Materials Science. Springer, Berlin, vol 42, pp 314–364

  • Dresselhaus MS, Dresselhaus G, Jorio A, Filho AGS, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40:2043–2061

    Article  CAS  Google Scholar 

  • Dror Y, Salalha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19:7012–7020

    Article  CAS  Google Scholar 

  • Du F, Fischer JE, Winey KI (2005) Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys Rev B 72:121404 R

    Google Scholar 

  • Ge JJ, Hou H, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD (2004) Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J Am Chem Soc 126:15754–15761

    Article  CAS  Google Scholar 

  • Haggenmuller R, Gonmas HH, Rinzler AG, Fischer JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219–225

    Article  Google Scholar 

  • Hou HQ, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD (2005) Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17:967–973

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Israelachvili JN (2006) Intermolecular surface forces. Academic Press, San Diego, 3rd edn

  • Jia Z, Wang ZY, Xu CL, Liang J, Wei BQ, Wu DH, Zhu SW (1999) Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng, A 271:395–400

    Article  Google Scholar 

  • Jin Z, Pramoda KP, Xu G, Goh SH (2001) Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacrylate) composites. Chem Phys Lett 337:43–47

    Article  CAS  Google Scholar 

  • Jorio A, Vasconcelos D, Filho AGS, Dresselhaus G, Dresselhaus MS, Swan AK, Ünlü MS, Goldberg BB, Pimenta MA, Hafner JH, Lieber CM, Saito R (2001) G-band Raman spectra of isolated single wall carbon nanotubes diameter and chirality dependence. Mater Res Soc Proc Fall 706:187–192

    Google Scholar 

  • Ko F, Gogotsi Y, Ali A, Naguib N, Ye HH, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165

    Article  CAS  Google Scholar 

  • Kovtyukhova NI, Mallouk TE (2005) Ultrathin anisotropic films assembled from individual single-walled Carbon nanotubes and amine polymers. J Phys Chem B 109:2540–2545

    Article  CAS  Google Scholar 

  • Kymakis E, Amaratunga GAJ (2002) Single-wall Carbon nanotube/conjugated polymer photovoltaic devices. Appl Phys Lett 80:112–114

    Article  CAS  Google Scholar 

  • Kymakis E, Alexandou I, Amaratunga GAJ (2002) Single-walled carbon nanotube-polymer composites: electrical optical and structural investigation. Synth Met 127:59–62

    Article  CAS  Google Scholar 

  • Li Y, Zhang B, Tao XY, Xu JM, Huang WZ, Luo JH, Li T, Bao Y, Geise HJ (2005) Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon 43:295–301

    Article  CAS  Google Scholar 

  • Li CY, Thostenson ET, Chou TW (2008) Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites. Compos Sci Technol 68:1445–1452

    Article  CAS  Google Scholar 

  • Liao K, Li S (2001) Interfacial characteristics of carbon nanotube-polystyrene composite system. Appl Phys Lett 79:4225–4227

    Article  CAS  Google Scholar 

  • Liu L, Qin Y, Guo ZX, Zhu D (2003) Eduction of solubilized multi-walled carbon nanotubes. Carbon 41:331–335

    Article  CAS  Google Scholar 

  • Liu TX, Phang IY, Shen L, Chow SY, Zhang WD (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222

    Article  CAS  Google Scholar 

  • Lorenzo LMR, Saldaña L, Garzón LB, Carrodeguas RG, Aza SD, Vilaboa N, Román JS (2012) Feasibility of ceramic–polymer composite cryogels as scaffolds for bone tissue engineering. J Tissue Eng Regenerat Med 6(6):421–433

    Article  Google Scholar 

  • Mathur A, Roy SS, Tweedie M, Maguire PD, Mclaughlin JA (2009) Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes. J Nanosci Nanotechnol 9:4392–4396

    Article  CAS  Google Scholar 

  • Mdarhri A, Carmona F, Brosseau C, Delhaes P (2008) Direct current electrical and microwave properties of polymer-multiwalled carbon nanotubes composites. J Appl Phys 103:054303–054309

    Article  Google Scholar 

  • Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized Carbon nanotubes in polystyrene. Macromolecules 35:8825–8830

    Article  CAS  Google Scholar 

  • Mott NF, Davis E (1979) Electronic processes in non-crystalline materials, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Obare SO, Jana NR, Murphy CJ (2001) Preparation of polystyrene and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett 1:601–603

    Article  CAS  Google Scholar 

  • Park SJ, Cho MS, Lim ST, Cho HJ, Jhon MS (2003) Synthesis and dispersion characteristics of multi-walled Carbon nanotube composites with poly(methyl methacrylate) prepared by in situ bulk polymerization macromol. Rapid Commun. 24:1070–1073

    Article  CAS  Google Scholar 

  • Peigney A (2003) Composite materials: tougher ceramics with nanotubes. Nat Mater 2:15–16

    Article  CAS  Google Scholar 

  • Pradhan B, Setyowati K, Liu H, Waldeck DH, Chen J (2008) Carbon nanotube-polymer nanocomposite infrared sensor. Nano Lett 8(4):1142–1146

    Article  CAS  Google Scholar 

  • Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870

    Article  CAS  Google Scholar 

  • Ruan B, Jacobi AM (2012) Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res Lett 7(1):127

    Article  Google Scholar 

  • Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40:5967–5971

    Article  CAS  Google Scholar 

  • Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddon RC (2004) Preparation of single walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett 4:459–464

    Article  CAS  Google Scholar 

  • Sheng P (1980) Fluctuation-induced tunneling conduction in disordered materials. Phys Rev B 21:2180–2195

    Article  CAS  Google Scholar 

  • Sheng P, Sichel EK, Gittleman JL (1978) Fluctuation-induced tunnelling conduction in carbon-polyvinylchloride composites. Phys Rev Lett 40:1197–1200

    Article  CAS  Google Scholar 

  • Singh I, Verma A, Kaur I, Bharadwaj LM, Bhatia V, Jain VK, Bhatia CS, Bhatnagar PK, Mathur PC (2010) The effect of length of single-walled carbon nanotubes (SWNTs) on electrical properties of conducting polymer–SWNT composites. J Polym Sci B Polym Phys 48(1):89–95

    Article  CAS  Google Scholar 

  • Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401

    Article  CAS  Google Scholar 

  • Suhr J, Koratkar N, Keblinski P, Ajayan PM (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4:134–137

    Article  CAS  Google Scholar 

  • Tan P, An L, Liu L, Guo Z, Czerw R, Carroll DL, Ajayan PM, Zhang N, Guo H (2002) Probing the phonon dispersion relations of graphite from the double-resonance process of Stokes and anti-Stokes Raman scatterings in multiwalled carbon nanotubes. Phys Rev B 66:245410–245418

    Article  Google Scholar 

  • Tiwari R, Garcia E (2011) The state of understanding of ionic polymer metal composite architecture: a review. Smart Mater Struct 20:083001

    Article  Google Scholar 

  • Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  • Valentini L, Biagiotti J, Kenny JM, Santucci SJ (2003) Effects of single-walled carbon nanotubes on the crystallization behavior of polypropylene. J Appl Polym Sci 87:708–713

    Article  CAS  Google Scholar 

  • Xia HS, Song M (2005) Preparation and characterization of polyurethane–carbon nanotube composites. Soft Matter 1:386–394

    Article  CAS  Google Scholar 

  • Xia HS, Wang Q, Li KS, Hu GJ (2004) Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process. J Appl Polym Sci 93:378–386

    Article  CAS  Google Scholar 

  • Xu XJ, Thwe MM, Shearwood C, Liao K (2002) Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Appl Phys Lett 81:2833

    Article  CAS  Google Scholar 

  • Yadav RM, Srivastava A, Srivastava ON (2004) Synthesis of bamboo-shaped carbon-nitrogen nanotubes using acetonitrile-ferrocene precursor. J Nanosci Nanotech 4(7):719–721

    Article  CAS  Google Scholar 

  • Yadav RM, Sripathi T, Srivastava A, Srivastava ON (2005) Effect of ferrocene concentration on the synthesis of bamboo-shaped carbon–nitrogen nanotube bundles. J Nanosci Nanotechnol 5:820–824

    Article  CAS  Google Scholar 

  • Yadav RM, Singh DP, Sripathi T, Srivastava ON (2008) Synthesis of C–N nanotube blocks and Y-junctions in bamboo-like C–N nanotubes. J Nanopart Res 10:1349–1354

    Article  CAS  Google Scholar 

  • Yadav RM, Awasthi K, Srivastava ON (2011) Preparation of carbon-nitrogen nanotubes- poly ethylene oxide composites films and their electrical conductivity measurement. Int J Nanosci 10(4):1091–1094

    Article  CAS  Google Scholar 

  • Yang Y, Grulke EA, Zhang ZG, Wu G (2006) Thermal and rheological properties of carbon nanotube-in-oil dispersions. J Appl Phys 99:114307

    Article  Google Scholar 

  • Yoshino K, Kajii H, Araki H, Sonoda T, Take H, Lee S (1999) Electrical and optical properties of conducting polymer-fullerene and conducting polymer-carbon nanotube composites. Fuller Sci Technol 7:695–711

    Article  CAS  Google Scholar 

  • Zhang WD, Shen L, Phang IY, Liu TX (2004) Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules 37:256–259

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are extremely grateful to Prof R S Katiyar, University of Puerto Rico (USA), and Prof. O.N.Srivastava, BHU Varanasi for their encouragement and kind support and Dr Kalpana Awasthi for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Manohar Yadav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, R.M., Dobal, P.S. Structural and electrical characterization of bamboo-shaped C–N nanotubes–poly ethylene oxide (PEO) composite films. J Nanopart Res 14, 1155 (2012). https://doi.org/10.1007/s11051-012-1155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1155-3

Keywords

Navigation