Skip to main content

Advertisement

Log in

Fabrication and characterization of supercapacitor electrodes using chemically synthesized CuO nanostructure and activated charcoal (AC) based nanocomposite

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, the activated charcoal dispersed with copper oxide (CuO) nanoparticles (NPs) electrode materials was proposed as electrode material for supercapacitor that is used as energy storage device. The CuO NPs were synthesized at room temperature using co-precipitation method and the nanocomposite was with activated charcoal (AC) powder for its application in an electrochemical supercapacitor. Synthesis of CuO nanoparticles was carried out at various temperatures. The optimized temperature for synthesis is 600 °C that resulted in better performance of electrode materials. Synchrotron X-ray diffraction confirms the monoclinic structure. The X-ray photoelectron spectroscopy suggests the +2 oxidation state of copper. Electrochemical properties of the prepared nanocomposite electrodes and fabricated supercapacitor cells were characterized using a.c. impedance, cyclic voltammetry, and charge–discharge techniques by using 1 M H2SO4 and 6 M KOH as electrolytes. The optimized composition is 1:1 (mass ratio) of CuO and AC. The specific capacitance of the supercapacitor cells is stable up to 2000 cycles at 100 mV cm−2, which shows that the device has good electrochemical reversibility and cycle life with 6 M KOH and 1 M H2SO4 electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adabi M, Adabi M (2019) J Dispers Sci Technol. https://doi.org/10.1080/01932691.2019.1678483

  • Barreca D, Comini E, Gasparotto A, Maccato C, Sada C, Sberveglieri G, Tondello E (2009) Chemical vapor deposition of copper oxide films and entangled quasi-1D nanoarchitectures as innovative gas sensors. Sensors Actuators B Chem 141:270–275

    CAS  Google Scholar 

  • Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91(1):37–50

    CAS  Google Scholar 

  • Cai J, Niu H, Li Z, Du Y, Cizek P, Xie Z, Xiong H, Lin T (2015) ACS Appl Mater Interfaces 7:14946–14953

    CAS  Google Scholar 

  • Choi HC, Shim M, Bangsaruntip S, Dai HJ (2002) Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J Am Chem Soc 124:9058–9059

    CAS  Google Scholar 

  • Choi SH, Kang YC, Choi YJ, Kim S (2014) Chem Asian J 9:2453

    CAS  Google Scholar 

  • Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer

  • Cozzoli PD, Kornowski A, Weller HJ (2003) Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J Am Chem Soc 125:14539–14548

    CAS  Google Scholar 

  • Darezereshki E, Bakhtiari F (2011) J Mining Metall Sect B Metall 47(1):73

    CAS  Google Scholar 

  • Dodoo-Arhin D, Leoni M, Scardi P (2012) Microemulsion synthesis of copper oxide nanorod-like structures. Mol Cryst Liq Cryst 555:17–31

    CAS  Google Scholar 

  • Feng S, Li W, Wang J, Song Y, Elzatahry AA, Xia Y, Zhao D (2014) Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. Nanoscale 6:14657–14661

    CAS  Google Scholar 

  • Guo S, Dong S, Wang E (2010) Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker. Adv Mater 22:1269–1272

    CAS  Google Scholar 

  • Hong Z, Cao Y, Deng J (2002) A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater Lett 52(1–2):34–38

    CAS  Google Scholar 

  • Hsieh CT, Chen JM, Lin HH, Shih HC (2003) Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Appl Phys Lett 82:3316–3318

    CAS  Google Scholar 

  • Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695

    CAS  Google Scholar 

  • Hu C, He S, Jiang S, Chen S, Hou H (2015) Natural source derived carbon paper supported conducting polymer nanowire arrays for high performance supercapacitors. RSC Adv 5:14441–14447

    CAS  Google Scholar 

  • Huang T, Qiu Z, Wu D, Hu Z (2015) Int J Electrochem Sci 10:6312

    CAS  Google Scholar 

  • Hwang SG, Ryu SH, Yun SR, Ko JM, Kim KM, Ryu KS (2011) Behavior of NiO–MnO2/MWCNT composites for use in a supercapacitor. Mater Chem Phys 130:507–512

    CAS  Google Scholar 

  • Kumar R, Diamant Y, Gedanken A (2000) Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem Mater 12:2301–2305

    CAS  Google Scholar 

  • Lam LT, Louey R (2006) Development of ultra-battery for hybrid-electric vehicle applications. J Power Sources 158:1140–1148

    CAS  Google Scholar 

  • Li N, Xiao Y, Xu C, Li H, Yang X (2013) Facile preparation of polyaniline nanoparticles via electrodeposition for supercapacitors. Int J Electrochem Sci 8:1181

    CAS  Google Scholar 

  • Liang C, Gao M, Pan H, Liu Y, Yan M (2013) Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. J Alloys Compd 575:246–256

    CAS  Google Scholar 

  • Lota K, Sierczynska A, Lota G (2011) Supercapacitors based on nickel oxide/carbon materials composites. Int J Electrochem 2011:1–6

    Google Scholar 

  • Miller JR, Simon P (2008) Materials science: electrochemical capacitors for energy management. Science 321:651–652

    CAS  Google Scholar 

  • Nie YF, Wang Q, Chen XY, Zhang ZJ (2016) Synergistic effect of novel redox additives of p-nitroaniline and dimethylglyoxime for highly improving the supercapacitor performances. Phys Chem Chem Phys 18:2718–2729

    CAS  Google Scholar 

  • Niri AD, Majidi RF, Saber R, Khosravani M, Adabi M (2019) Biointerface Res Appl Chem 9(4):4022–4026

    CAS  Google Scholar 

  • Niu H, Zhou D, Yang X, Li X, Wang Q, Qu F (2015) Towards three-dimensional hierarchical ZnO nanofiber@Ni(OH)2 nanoflake core–shell heterostructures for high-performance asymmetric supercapacitors. J Mater Chem A 3:18413–18421

    CAS  Google Scholar 

  • Poizot P, Hung C, Nikiforov M, Bohannan EW, Switzer JA (2003) Electrochem Solid-State Lett 6(2):C21

    CAS  Google Scholar 

  • Rakhi RB, Chen W, Alshareef HN (2012) Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors. J Mater Chem 22:5177

    CAS  Google Scholar 

  • Sahay R, Kumar PS, Aravindan V, Sundaramurthy J, Ling WC, Mhaisalkar SG, Ramakrishna S, Madhavi S (2012) High aspect ratio electrospun CuO nanofibers as anode material for lithium-ion batteries with superior cycleability. J Phys Chem C 116:18087–18092

    CAS  Google Scholar 

  • Shaikh JS, Pawar RC, Moholkar AV, Kim JH, Patil PS (2011) CuO–PAA hybrid films: chemical synthesis and supercapacitor behavior. Appl Surf Sci 257:4389–4397

    CAS  Google Scholar 

  • Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2:6086–6091

    CAS  Google Scholar 

  • Sieben JM, Morallón E, Cazorla-Amorós D (2013) Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods. Energy 58:519–526

    CAS  Google Scholar 

  • Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    CAS  Google Scholar 

  • Son DI, You CH, Kim TW (2009) Appl Surf Sci 255(21):8794

    CAS  Google Scholar 

  • Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    CAS  Google Scholar 

  • Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y (2005) Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. J Phys Chem B 109:7330–7338

    CAS  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    CAS  Google Scholar 

  • Tran TH, Nguyen VT (2014) Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: a brief review. Int Sch Res Not 2014:1–14

    Google Scholar 

  • Wang H, Xu J, Zhu J, Chen H (2002) Preparation of CuO nanoparticles by microwave irradiation. J Cryst Growth 244:88–94

    CAS  Google Scholar 

  • Wang J, He S, Li Z, Jing X, Zhang M, Jiang Z (2009) Self-assembled CuO nanoarchitectures and their catalytic activity in the thermal decomposition of ammonium perchlorate. Colloid Polym Sci 287:853–858

    CAS  Google Scholar 

  • Wang G, Huang J, Chen S, Gao Y, Cao D (2011) Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J Power Sources 196:5756–5760

    CAS  Google Scholar 

  • Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270

    CAS  Google Scholar 

  • Xiang JY, Tu JP, Zhang L, Zhou Y, Wang XL, Shi SJ (2010) Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. J Power Sources 195:313–319

    CAS  Google Scholar 

  • Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J, Wang X, Wei F (2011) Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res 4:870–881

    CAS  Google Scholar 

  • Yadav MS (2020) Synthesis and characterization of Mn2O3−Mn3O4 nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application. J Energy Storage 27:101079

    Google Scholar 

  • Yadav MS, Tripathi SK (2017) Synthesis and characterization of nanocomposite NiO/activated charcoal electrodes for supercapacitor application. Ionics 23:2919–2930

    CAS  Google Scholar 

  • Yadav MS, Singh N, Bobade SM (2018a) Zinc oxide nanoparticles and activated charcoal-based nanocomposite electrode for supercapacitor application. Ionics 24:3611–3630

    CAS  Google Scholar 

  • Yadav MS, Singh N, Kumar A (2018b) Synthesis and characterization of zinc oxide nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application. J Mater Sci Mater Electron 29:6853–6869

    CAS  Google Scholar 

  • Yadav MS, Sinha AK, Singh MN (2018c) Electrochemical behaviour of ZnO–AC based nanocomposite electrode for supercapacitor. Mater Res Express 5:085503

    Google Scholar 

  • Yadav MS, Singh N, Bobade SM (2019) VxOy nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application. Ionics 26:2581–2598.

  • Yuan G, Jiang H, Lin C, Liao S (2007) Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals. J Cryst Growth 303(2):400–406

    CAS  Google Scholar 

  • Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    CAS  Google Scholar 

  • Zhang J, Liu J, Peng Q, Wang X, Li Y (2006) Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater 18:867–871

    CAS  Google Scholar 

  • Zheng L, Xu Y, Jin D, Xie Y (2011) Polyaniline-intercalated molybdenum oxide nanocomposites: simultaneous synthesis and their enhanced application for supercapacitor. Chem Asian J 6:1505–1514

    CAS  Google Scholar 

  • Zheng C, Zhou X, Cao H, Wang G, Liu Z (2014) Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J Power Sources 258:290–296

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India, is gratefully acknowledged. I am thankful to Prof. Ashok K. Nagawat, Dr. K. V. R. Rao, Mr. Sachin Surve, and Mr. Praveen Sharma from University Science Instrumentation Centre (USIC), University of Rajasthan, Jaipur, for providing SEM and FTIR data. I would also like to thank Dr. Anil Kumar Sinha, Anuj Upadhyay, and M. N. Singh from BL-12, ISRF, Indus-2, RRCAT, Indore, for providing SXRD data. I am thankful to Dr. U. K. Goutam, Dr. R. K. Sharma, and Mr. Jaspreet Singh from beamline-14, technical physics division of Bhabha Atomic Research Centre, Mumbai, in ISRF, Indus-2, RRCAT, Indore, for providing XPES data. I am also thankful to Prof. K. Sachdev and Mr. Amit Kumar Sharma from MRC, MNIT, Jaipur, for providing TEM data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Singh Yadav.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M.S. Fabrication and characterization of supercapacitor electrodes using chemically synthesized CuO nanostructure and activated charcoal (AC) based nanocomposite. J Nanopart Res 22, 303 (2020). https://doi.org/10.1007/s11051-020-05027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05027-x

Keywords

Navigation