Skip to main content

Advertisement

Log in

Molecular mapping and transfer of a novel brown planthopper resistance gene bph42 from Oryza rufipogon (Griff.) To cultivated rice (Oryza sativa L.)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most destructive pests of rice accounting for 52% of annual yield loss. The breakdown of resistance against known BPH biotypes necessitates the identification and deployment of new genes from diverse sources. The current study aimed at mapping and transfer of a novel BPH resistance gene from the wild species of rice O. rufipogon accession CR100441 to the elite rice cultivar against BPH biotype 4.

Methods and Results

The phenotypic screening against BPH biotype 4 was conducted using the standard seedbox screening technique (SSST). Inheritance study using damage score caused by BPH infestation at the seedling stage indicated the presence of a single major recessive gene with the segregation ratio of susceptible to resistant plants in 3:1 (210:66, χ2c = 0.17 ≤ χ20.05,1 = 3.84). The genotyping of the mapping population was done using polymorphic microsatellite markers between PR122 and O.rufipogon acc.CR100441 spanning all the 12 chromosomes of rice. A total of 537 SSR markers were used to map a BPH resistance gene (designated as bph42) on the short arm of chromosome 4 between RM16282 and RM6659. QTL analysis identified a peak marker RM16335 contributing 29% of the phenotypic variance at 40.76 LOD.

Conclusions

The identified marker co-segregates with the bph42 and hence could be efficiently used for marker-assisted selection (MAS) for the transfer of resistance into elite rice cultivars. The introgression lines with higher yield and BPH resistance were identified and are under advanced yield trails for further varietal release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All the data generated and analyzed in this study are available in this article as supplementary material.

Statements and Declarations.

References

  1. Bhatia D, Joshi S, Das A, Vikal Y, Sahi GK, Neelam K, Kaur K, Singh K (2017) Introgression of Yield Potential Component Traits in Rice (. ssp indica) through Interspecific Hybridization Crop Sci 57:1557–1573

    CAS  Google Scholar 

  2. Bhatia D, Wing RA, Yu Y, Chougule K, Kudrna D, Lee S, Rang A, Singh K (2018) Genotyping by sequencing of rice interspecific backcross inbred lines identifies QTLs for grain weight and grain length. Euphytica 214:41. https://doi.org/10.1007/s10681-018-2119-1

    Article  Google Scholar 

  3. Bing Z, Qi-Ming D, Zhang Q, Jie-Qin L, Shao-Ping Y, Liang Y, Yong P, Ping L (2006) Analysis of segregation distortion of molecular markers in F2 population of rice. Acta Genetica Sinica 33(5):449–457

    Article  Google Scholar 

  4. Bisht DS, Bhatia V, Bhattacharya R (2019) Improving plant resistance to insect-pests and pathogens: The new opportunities through targeted genome editing. Semin Cell Dev Biol 96:65–76

    Article  CAS  PubMed  Google Scholar 

  5. Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47

    Article  CAS  PubMed  Google Scholar 

  6. Chen JW, Wang L, Pang XF, Pan H (2006) Genetic analysis and fine mapping of a rice brown plant hopper (Nilaparvatalugens Stål) resistance gene bph19(t). Mol Genet Genom 275:321–329

  7. Elanchezhyan K, Sathyan T, Manikandan KR (2020) Brown Plant Hopper (BPH) and Their Management in Rice. Biotica Res Today 2:090–092

    Google Scholar 

  8. Frisvold GB (2019) How low can you go? Estimating impacts of reduced pesticide use. Pest Manag Sci 75:1223–1233

    Article  CAS  PubMed  Google Scholar 

  9. He J, Liu YQ, Liu YL, Jiang L, Wu H, Kang HY, Liu SJ, Chen LM, Liu X, Cheng XN, Wan JM (2013) High-resolution mapping of brown planthopper (BPH) resistance gene. in rice (Oryza sativa L) Mol Breed 31:549–557

    Article  CAS  Google Scholar 

  10. Heinrichs EA, Medrano FG, Rapusas HR (1985) Genetic Evaluation for Insect Resistance in Rice. Los Baños, the Philippines: International Rice Research Institute. http://books.irri.org/9711041103_content

  11. Horgan FG, Ramal AF, Bentur JS, Kumar R, Bhanu KV, Sarao PS, Iswanto ES, Chien HV, Phyu MH, Bernal CC, Almazan ML, Alam MZ, Lu Z, Huang S (2015) Virulence of brown planthopper (Nilaparvata lugens) populations from south and South East Asia against resistant rice varieties. Crop Prot 78:222–231

    Article  Google Scholar 

  12. Huang D, Qiu Y, Zhang Y, Huang F, Meng J, Wei S, Li R, Chen B (2013) Fine mapping and characterization of. a brown planthopper resistance gene from wild rice (Oryza rufipogon Griff) Theor Appl Genet 126:219–229

    CAS  Google Scholar 

  13. International Rice Research Institute (IRRI) (1996) Standard Evaluation System for Rice. International Rice Research Institute, Los Baños, Philippines, pp 30–31

    Google Scholar 

  14. Jena KK, Jeung JU, Lee JH, Choi HC, Brar DS (2006) High resolution mapping of a new brown plant hopper (BPH) resistance gene,. and marker-assisted selection for BPH resistance in rice (Oryza sativa L) Theor Appl Genet 112:288–297

    CAS  PubMed  Google Scholar 

  15. Kim SM, Sohn JK (2005) Identification of rice gene (. Stål) using STS markers Mol Cells 20:30–34

    CAS  PubMed  Google Scholar 

  16. Koide Y, Ikenaga M, Sawamura N, Nishimoto D, Matsubara K, Onishi K, Kanazawa A, Sano Y (2008) The evolution of sex-independent transmission ratio distortion involving multiple allelic interactions at a single locus in rice. Genetics 180:409–420. doi:https://doi.org/10.1534/genetics.108.090126

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kumar H, Maurya RP, Tiwari SN (2012) Studies on antibiosis mechanism of resistance in rice against brown planthopper,. (Stål) Ann Plant Prot Sci 28:98–101

    Google Scholar 

  18. Kumar K, Sarao PS, Bhatia D, Neelam K, Kaur A, Mangat GS, Brar DS, Singh K (2018) High–resolution genetic mapping of a novel brown planthopper resistance locus,. in Oryza sativa L X Oryza nivara (Sharma & Shastry) derived interspecific F2 population Theor Appl Genet 131:1163–1171

    CAS  Google Scholar 

  19. Kumar K, Kaur P, Kishore A, Vikal Y, Singh K, Neelam K (2020) Stål. Plant Breed 139:1052–1066Recent advances in genomics-assisted breeding of brown planthopper (Nilaparvata lugens

    Article  CAS  Google Scholar 

  20. Li JB, Xia MY, He GC, Wan BL, Zha ZP (2006) Marker-assisted selection for brown palnt hopper locus in rice. Maejo International Journal on Science. IRRI

  21. Li Z, Xue Y, Zhou H, Li Y, Usman B, Jiao X, Wang X, Liu F, Qin B, Li R, Qiu Y (2019) High-resolution mapping and breeding application of a novel brown planthopper resistance gene derived from wild rice. (Oryza rufipogon Griff) Rice 12:41–54. https://doi.org/10.1186/s12284-019-0289-7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J3:269–283

    Article  Google Scholar 

  23. Mizuno H, Katagiri S, Kanamori H, Mukai Y, Sasaki T, Matsumoto T, Wu J (2020) Evolutionary dynamics and impacts of chromosome regions carrying R-gene clusters in rice. Sci rep 10:872. https://doi.org/10.1038/s41598-020-57729-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mohanty SK, Panda RS, Mohapatra SL, Nanda A, Behera L, Jena M, Sahu RK, Sahu SC, Mohapatra T (2017) Identification of novel quantitative trait loci associated with brown planthopper resistance in the rice landrace Salkathi. Euphytica 213:38. https://doi.org/10.1007/s10681-017-1835-2

    Article  Google Scholar 

  25. Neelam K, Lore J, Pathania S, Kumar K, Sahi G, Mangat GS, Singh K (2017) Identification of resistance sources in wild species of rice against two recently evolved pathotypes of. pv oryzae Plant Genet Resour 15:558–562

    Article  CAS  Google Scholar 

  26. Neelam K, Thakur S, Neha, Yadav IS, Kumar K, Dhaliwal SS, Singh K (2017) Novel Alleles of Phosphorus-Starvation Tolerance 1 Gene (. Confers High Phosphorus Uptake Efficiency Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00509

  27. Neelam K, Malik P, Kaur K, Kumar K, Jain S, Neha, Singh K (2018) Griff. The Wild Oryza Genomes Compendium of Plant Genomes. https://doi.org/10.1007/978-3-319-71997-9_25

    Article  Google Scholar 

  28. Nguyen TL, Bui CB (2003) Genetic and physical maps of gene. controlling brown planthopper resistance in rice (Oryza sativa L) Omonrice 11:35–41

    Google Scholar 

  29. Orjuela J, Garavito A, Bouniol M, Arbelaez JD, Moreno L, Kimball J, Wilson G, Rami JF, Tohme J, McCouch SR, Lorieux M (2010) A universal core genetic map for rice. Theor Appl Genet 120:563–572

    Article  CAS  PubMed  Google Scholar 

  30. Pathak MD, Cheng CH, Fortuno ME (1969) Resistance to. and Nilaparvata lugens in varieties of rice Nature 223:502–504

    Google Scholar 

  31. Qiu Y, Guo J, Jing S, Zhu L, He G (2010) High-resolution mapping of the brown planthopper resistance gene. in rice and characterizing its resistance in the 9311 and Nipponbare near isogenic backgrounds Theor Appl Genet 121:1601–1611

    PubMed  Google Scholar 

  32. Rahman ML, Jiang W, Chu SH, Qiao Y, Ham TH, Woo MK, Lee J, Khanam S, Chin JH, Jeung JU, Brar DS, Jena KK, Koh HJ (2009) High-resolution mapping of two brown planthopper resistance genes, Bph20(t) and Bph21(t), originating from Oryzaminuta. Theor Appl Genet 119:1237–1246

  33. Rashid M, Ahmed N, Jahan M, Islam KS, Nansen C, Willers JL, Ali MP (2017) Higher fertilizer inputs increase fitness traits of brown planthopper in rice. Sci Rep 7:1–16

    Article  CAS  Google Scholar 

  34. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sano Y (1992) Genetic Comparisons of Chromosome 6 between Wild and Cultivated Rice. Japanese J Breed 42:561–572. https://doi.org/10.1270/jsbbs1951.42.561

    Article  CAS  Google Scholar 

  36. Sarao PS, Sahi GK, Neelam K, Mangat GS, Patra BC, Singh K (2016) Donors for Resistance to Brown Planthopper Nilaparvata lugens (Stål) from Wild Rice Species. Rice Sci 23:219–224

    Article  Google Scholar 

  37. Shanmugavadivel PS, Mithra SVA, Dokku P, Kumar KA, Rao GJ, Singh VP, Singh AK, Singh NK, Mohapatra T (2013) Mapping quantitative trait loci (QTL) for grain size in rice using a RIL population from Basmati × indica cross showing high segregation distortion. Euphytica 194:401–416. doi: https://doi.org/10.1007/s10681-013-0964-5

    Article  CAS  Google Scholar 

  38. Srivastava C, Chander S, Sinha SR, Palta RK (2009) Toxicity of various insecticides against Delhi and Palla population of brown planthopper (. Ind J Agric Sci 79:1003–1006

    CAS  Google Scholar 

  39. Su CC, Zhai HQ, Wang CM, Sun LH, Wan JM (2006) SSR mapping of brown planthopper resistance gene. in Kaharamana an indica rice (Oryza sativa L) Acta Genetica Sinica 33:262–268

    Article  CAS  PubMed  Google Scholar 

  40. Sun LH, Su CC, Wang CM, Zhai HQ, Wan JM (2005) Mapping of a major resistance gene to the brown planthopper in the rice cultivar Rathu Heenati. Breed Sci 55:391–396

    Article  CAS  Google Scholar 

  41. Sun LH, Wang CM, Su CC, Liu YQ, Zhai HQ, Wan J (2006) Mapping and marker-assisted selection of a brown planthopper resistance gene. in rice (Oryza sativa L) Acta Genetica Sinica 33:717–723

    Article  CAS  PubMed  Google Scholar 

  42. Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (. L) Theor Appl Genet 100:697–712

    Article  CAS  Google Scholar 

  43. Wang H, Shi S, Guo Q, Nie L, Du B, Chen R, Zhu L, He G (2018) High-resolution mapping of a gene conferring strong antibiosis to brown planthopper and developing resistant near-isogenic lines in 9311 background. Mol Breed 38:107. https://doi.org/10.1007/s11032-018-0859-1

    Article  CAS  Google Scholar 

  44. Wang X, Han Y, Zhang Y, Deng B, Wu B, Guo X, Qin Y, Fang Y, Liu F, Qin B, Luo J, Li R (2021) QTL Mapping Integrated with BSA-Seq Analysis Identifies a Novel Gene Conferring Resistance to Brown Planthopper from Common Wild Rice (. Griff) Euphytica 218:34. https://doi.org/10.1007/s10681-021-02964-z

    Article  CAS  Google Scholar 

  45. Win SS, Muhamad R, Ahmad ZA, Adam NA (2011) Life table and population parameters of. Stål (Homoptera: Delphacidae) on rice Trop Life Sci Res 22:25–35

    PubMed  Google Scholar 

  46. Wu JT, Heinrich EA, Medrano FG (1986) Resistance of wild rice, Oryzaspp, to the brown plant hopper, Nilaparvatalugens (Homoptera: Delphacidae). Environ Entomol 15:648–653

  47. Xiao J, Li J, Grandillo S, Yuan L, Tanksley SD, McCouch SR (1998) Identification of traits improving quantitative trait loci alleles from wild rice relative Oryza rufipogon. Genet 150:899–809

    Article  CAS  Google Scholar 

  48. Xu S (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–2208. doi: https://doi.org/10.1534/genetics.108.090688

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang HY, Ren X, Weng QM, Zhu LL, He GC (2002) Molecular mapping and genetic analysis of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene. Hereditas 136:39–43

    Article  PubMed  Google Scholar 

  50. Yang HY, You AQ, Yang ZF, Zhang FT, He RF, Zhu LL, He GC (2004) High-resolution genetic mapping at the Bph15 locus for brown planthopper resistance in rice (Oryza sativa L.). Theor Appl Genet 110:182–191

    Article  CAS  PubMed  Google Scholar 

  51. Yara A, Phi CN, Matsumura M, Yoshimura A, Yasui H (2010) Development of nearisogenic lines for Bph25(t) and Bph26(t), which confer resistance to the brown planthopper, Nilaparvatalugens Stål in indica rice ‘ADR52’. Breed Sci 60:639–647

  52. Zhang L, Wang S, Li H, Deng Q, Zheng A, Li P, Li Z, Wang J (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet 121:1071–1082. doi: https://doi.org/10.1007/s00122-010-1372-z

    Article  PubMed  Google Scholar 

  53. Zhou YL, Uzokwe VN, Zhang CH, Cheng LR, Wang L, Chen K, Gao XQ, Sun Y, Chen JJ, Zhu LH, Zhang Q (2011) Improvement of bacterial blight resistance of hybrid rice in China using the Xa23 gene derived from wild rice (Oryza rufipogon). Crop Prot 30(6):637–644

    Article  CAS  Google Scholar 

  54. Zheng X, Zhu L, He G (2020) Genetic and molecular understanding of host rice resistance and. adaptation Curr Opin Insect Sci 45:14–20

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Rice Research Institute, Cuttack for providing seed material. This work was supported by ICAR under the Project ‘Molecular breeding for improvement of tolerance to biotic and abiotic stresses, yield and quality traits in Crops-Rice, Department of Biotechnology, New Delhi (BT/PR31; 75/ATGC/127/5/2019) and Department of Science and Technology, New Delhi (CRG/2018/001833).

Funding

This work was supported by ICAR under the Project ‘Molecular breeding for improvement of tolerance to biotic and abiotic stresses, yield and quality traits in Crops-Rice, Department of Biotechnology, New Delhi (BT/PR31; 75/ATGC/127/5/2019) and Department of Science and Technology, New Delhi (CRG/2018/001833).

Author information

Authors and Affiliations

Authors

Contributions

Kumari Neelam, Kuldeep Singh, Yogesh Vikal: Conceptualization of the research, proofreading of the manuscript; Pavneet Kaur carried out all the genotyping and phenotyping of the mapping population; Kumari Neelam, Kishor Kumar, Ankita Babbar: Investigation, data analysis, writing of the original draft; Preetinder Singh Sarao provided BPH biotype 4 and screening facility; Renu Khanna, Rupinder Kaur, Gurjeet Singh Mangat: Handling of segregating generation, breeding and generation advancement, management of multi-location trials. All co-authors approved this manuscript before submission.”

Corresponding author

Correspondence to Kumari Neelam.

Ethics declarations

Competing interests

The authors declared no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

Additional informed consent was obtained from all individual participants included in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Neelam, K., Sarao, P.S. et al. Molecular mapping and transfer of a novel brown planthopper resistance gene bph42 from Oryza rufipogon (Griff.) To cultivated rice (Oryza sativa L.). Mol Biol Rep 49, 8597–8606 (2022). https://doi.org/10.1007/s11033-022-07692-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07692-8

Keywords

Navigation