Skip to main content
Log in

Genome-wide identification of fasciclin-like arabinogalactan proteins in jute and their expression pattern during fiber formation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Fasciclin-like arabinogalactan proteins (FLAs), a class of arabinogalactan proteins (AGPs) are involved in plant growth and development via cell communication and adhesion. FLAs were also associated with fiber and wood formation in plants but no information is available about the roles of FLA proteins during fibre development of jute. Here, we performed molecular characterization, evolutionary relationship and expression profiling of FLAs proteins in jute (Corchorus olitorius). In total, nineteen CoFLA genes have been identified in jute genome, which were divided into four classes like FLAs of other species based on protein structure and similarity. All CoFLAs have N-terminal signal peptide and one or two FAS domain while two FLAs lack well defined AGP region and eight FLAs were devoid of C-terminal glycosylphosphatidylinositol (GPI) anchor. Expression analysis of different regions of jute stem suggested their involvement in different fiber development stages. Four genes CoFLA 11, 12, 20, and 23 were highly or predominately expressed in fiber containing bark tissues while the expression levels of six CoFLA genes 02, 03, 04, 06, 14 and 19 were comparatively higher in stick. Higher transcripts levels of CoFLA 12 and 20 in the middle bark tissues suggest their involvement in fiber elongation. In contrast, the CoFLA 11 and 23 were more expressed in bottom bark tissues suggesting their potential involvement in secondary cell wall synthesis. Our study can serve as solid foundation for further functional exploration of FLAs and in future breeding program of jute aiming fiber improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets supporting the conclusions and description of a complete protocol can be found within the manuscript and its additional files.

References

  1. Faik A, Abouzouhair J, Sarhan F (2006) Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): identification and bioinformatic analyses. Mol Genet Genom 276(5):478–494. https://doi.org/10.1007/s00438-006-0159-z

    Article  CAS  Google Scholar 

  2. Jun L, Xiaoming W (2012) Genome-wide identification, classification and expression analysis of genes encoding putative fasciclin-like arabinogalactan proteins in Chinese cabbage (Brassica rapa L.). Mol Biol Rep 39(12):10541–10555. https://doi.org/10.1007/s11033-012-1940-1

    Article  CAS  PubMed  Google Scholar 

  3. Johnson KL, Jones BJ, Bacic A, Schultz CJ (2003) The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol 133(4):1911–1925. https://doi.org/10.1104/pp.103.031237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58(10):1399–1417. https://doi.org/10.1007/pl00000784

    Article  CAS  PubMed  Google Scholar 

  5. Gaspar Y, Johnson KL, McKenna JA, Bacic A, Schultz CJ (2001) The complex structures of arabinogalactan-proteins and the journey towards understanding function. Plant Mol Biol 47(1–2):161–176

    Article  CAS  PubMed  Google Scholar 

  6. Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58(1):137–161. https://doi.org/10.1146/annurev.arplant.58.032806.103801

    Article  CAS  PubMed  Google Scholar 

  7. Pereira AM, Pereira LG, Coimbra S (2015) Arabinogalactan proteins: rising attention from plant biologists. Plant Reprod 28(1):1–15. https://doi.org/10.1007/s00497-015-0254-6

    Article  CAS  PubMed  Google Scholar 

  8. Schultz CJ, Rumsewicz MP, Johnson KL, Jones BJ, Gaspar YM, Bacic A (2002) Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiol 129(4):1448–1463. https://doi.org/10.1104/pp.003459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Showalter AM, Keppler B, Lichtenberg J, Gu D, Welch LR (2010) A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol 153(2):485–513. https://doi.org/10.1104/pp.110.156554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Zang L, Zheng T, Chu Y, Ding C, Zhang W, Huang Q, Su X (2015) Genome-wide analysis of the fasciclin-like arabinogalactan protein gene family reveals differential expression patterns, localization, and salt stress response in populus. Front Plant Sci 6:1140. https://doi.org/10.3389/fpls.2015.01140

    Article  PubMed Central  PubMed  Google Scholar 

  11. Elkins T, Zinn K, McAllister L, Hoffmann FM, Goodman CS (1990) Genetic analysis of a drosophila neural cell adhesion molecule: interaction of fasciclin I and Abelson tyrosine kinase mutations. Cell 60(4):565–575. https://doi.org/10.1016/0092-8674(90)90660-7

    Article  CAS  PubMed  Google Scholar 

  12. Huber O, Sumper M (1994) Algal-CAMs: isoforms of a cell adhesion molecule in embryos of the alga Volvox with homology to drosophila fasciclin I. EMBO J 13(18):4212–4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawamoto T, Noshiro M, Shen M, Nakamasu K, Hashimoto K, Kawashima-Ohya Y, Gotoh O, Kato Y (1998) Structural and phylogenetic analyses of RGD-CAP/beta ig-h3, a fasciclin-like adhesion protein expressed in chick chondrocytes. Biochim Biophys Acta 1395(3):288–292. https://doi.org/10.1016/s0167-4781(97)00172-3

    Article  CAS  PubMed  Google Scholar 

  14. Tan L, Leykam JF, Kieliszewski MJ (2003) Glycosylation motifs that direct arabinogalactan addition to arabinogalactan-proteins. Plant Physiol 132(3):1362–1369. https://doi.org/10.1104/pp.103.021766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Huang GQ, Xu WL, Gong SY, Li B, Wang XL, Xu D, Li XB (2008) Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress. Physiol Plant 134(2):348–359. https://doi.org/10.1111/j.1399-3054.2008.01139.x

    Article  CAS  PubMed  Google Scholar 

  16. Guerriero G, Mangeot-Peter L, Legay S, Behr M, Lutts S, Siddiqui KS, Hausman JF (2017) Identification of fasciclin-like arabinogalactan proteins in textile hemp (Cannabis sativa L.): in silico analyses and gene expression patterns in different tissues. BMC Genom 18(1):741. https://doi.org/10.1186/s12864-017-3970-5

    Article  CAS  Google Scholar 

  17. MacMillan CP, Taylor L, Bi Y, Southerton SG, Evans R, Spokevicius A (2015) The fasciclin-like arabinogalactan protein family of Eucalyptus grandis contains members that impact wood biology and biomechanics. New Phytol 206(4):1314–1327. https://doi.org/10.1111/nph.13320

    Article  CAS  PubMed  Google Scholar 

  18. Shi H, Kim Y, Guo Y, Stevenson B, Zhu JK (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15(1):19–32. https://doi.org/10.1105/tpc.007872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Johnson KL, Kibble NA, Bacic A, Schultz CJ (2011) A fasciclin-like arabinogalactan-protein (FLA) mutant of Arabidopsis thaliana, fla1, shows defects in shoot regeneration. PLoS ONE 6(9):e25154. https://doi.org/10.1371/journal.pone.0025154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG (2010) Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J 62(4):689–703. https://doi.org/10.1111/j.1365-313X.2010.04181.x

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Jiang C, Wang C, Yang Y, Yang L, Gao X, Zhang H (2015) Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees. J Exp Bot 66(5):1291–1302. https://doi.org/10.1093/jxb/eru479

    Article  CAS  PubMed  Google Scholar 

  22. Huang GQ, Gong SY, Xu WL, Li W, Li P, Zhang CJ, Li DD, Zheng Y, Li FG, Li XB (2013) A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiol 161(3):1278–1290. https://doi.org/10.1104/pp.112.203760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Roach MJ, Deyholos MK (2007) Microarray analysis of flax (Linum usitatissimum L.) stems identifies transcripts enriched in fibre-bearing phloem tissues. Mol Genet Genom 278(2):149–165. https://doi.org/10.1007/s00438-007-0241-1

    Article  CAS  Google Scholar 

  24. Roach MJ, Deyholos MK (2008) Microarray analysis of developing flax hypocotyls identifies novel transcripts correlated with specific stages of phloem fibre differentiation. Ann Bot 102(3):317–330. https://doi.org/10.1093/aob/mcn110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gorshkova T, Chernova T, Mokshina N, Gorshkov V, Kozlova L, Gorshkov O (2018) Transcriptome analysis of intrusively growing flax fibers isolated by laser microdissection. Sci Rep 8(1):14570. https://doi.org/10.1038/s41598-018-32869-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Townsend T, Sette J (2016) Natural Fibres and the World Economy. In: Fangueiro R, Rana S (eds) Natural fibres: advances in science and technology towards industrial applications. RILEM bookseries, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7515-1_30

    Chapter  Google Scholar 

  27. Shafrin F, Ferdous AS, Sarkar SK, Ahmed R, Amin A, Hossain K, Sarker M, Rencoret J, Gutierrez A, Del Rio JC, Sanan-Mishra N, Khan H (2017) Modification of monolignol biosynthetic pathway in jute: different gene, different consequence. Sci Rep 7:39984. https://doi.org/10.1038/srep39984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Choudhary SB, Kumar M, Chowdhury I, Singh RK, Pandey SP, Sharma HK, Karmakar PG (2016) An efficient and cost effective method of RNA extraction from mucilage, phenol and secondary metabolite rich bark tissue of tossa jute (C. olitorius L.) actively developing phloem fiber. 3 Biotech 6(1):100. https://doi.org/10.1007/s13205-016-0415-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tanmoy AM, Alum AM, Islam MS, Farzana T, Khan H (2015) Jute (Corchorus olitorius var. O-72) stem lignin: variation in content with age. Bangladesh J Bot 43(3):309–314. https://doi.org/10.3329/bjb.v43i3.21603

    Article  Google Scholar 

  30. del Rio JC, Rencoret J, Marques G, Li J, Gellerstedt G, Jimenez-Barbero J, Martinez AT, Gutierrez A (2009) Structural characterization of the lignin from jute (Corchorus capsularis) fibers. J Agric Food Chem 57(21):10271–10281. https://doi.org/10.1021/jf900815x

    Article  CAS  PubMed  Google Scholar 

  31. Islam MS, Saito JA, Emdad EM, Ahmed B, Islam MM, Halim A, Hossen QM, Hossain MZ, Ahmed R, Hossain MS, Kabir SM, Khan MS, Khan MM, Hasan R, Aktar N, Honi U, Islam R, Rashid MM, Wan X, Hou S, Haque T, Azam MS, Moosa MM, Elias SM, Hasan AM, Mahmood N, Shafiuddin M, Shahid S, Shommu NS, Jahan S, Roy S, Chowdhury A, Akhand AI, Nisho GM, Uddin KS, Rabeya T, Hoque SM, Snigdha AR, Mortoza S, Matin SA, Islam MK, Lashkar MZ, Zaman M, Yuryev A, Uddin MK, Rahman MS, Haque MS, Alam MM, Khan H, Alam M (2017) Comparative genomics of two jute species and insight into fibre biogenesis. Nat Plants 3:16223. https://doi.org/10.1038/nplants.2016.223

    Article  CAS  PubMed  Google Scholar 

  32. Chakraborty A, Sarkar D, Satya P, Karmakar PG, Singh NK (2015) Pathways associated with lignin biosynthesis in lignomaniac jute fibres. Mol Genet Genom 290(4):1523–1542. https://doi.org/10.1007/s00438-015-1013-y

    Article  CAS  Google Scholar 

  33. Zhang L, Ming R, Zhang J, Tao A, Fang P, Qi J (2015) De novo transcriptome sequence and identification of major bast-related genes involved in cellulose biosynthesis in jute (Corchorus capsularis L.). BMC Genom 16:1062. https://doi.org/10.1186/s12864-015-2256-z

    Article  CAS  Google Scholar 

  34. Gorshkova T, Sal'nikov V, Chemikosova S, Ageeva M, Pavlencheva N, Dam J (2003) The snap point: a transition point in Linum usitatissimum bast fiber development. Ind Crops Prod 18:213–221. https://doi.org/10.1016/S0926-6690(03)00043-8

    Article  Google Scholar 

  35. Esau K (1943) Vascular differentiation in the vegetative shoots of Linum III. The origin of the bast fibres. Am J Bot 30:579–586

    Article  Google Scholar 

  36. Ageeva MV, Petrovska B, Kieft H, Salnikov VV, Snegireva AV, van Dam JEG, van Veenendaal WLH, Emons AMC, Gorshkova TA, van Lammeren AAM (2005) Intrusive growth of flax phloem fibers is of intercalary type. Planta 222:565–574

    Article  CAS  PubMed  Google Scholar 

  37. Gorshkova TA, Wyatt SE, Salnikov VV, Gibeaut DM, Ibragimov MR, Lozovaya VV, Carpita NC (1996) Cell-wall polysaccharides of developing flax plants. Plant Physiol 110:721–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gorshkova TA, Salnikov VV, Pogodina NM, Chemikosova SB, Yablokova EV, Ulanov AV, Ageeva MV, van Dam JEG, Lozovaya VV (2000) Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L.) stem tissues. Ann Bot 85:477–486

    Article  CAS  Google Scholar 

  39. Day A, Ruel K, Neutelings G, Cronier D, David H, Hawkins S, Chabbert B (2005) Lignification in the flax stem: evidence for an unusual lignin in bast fibers. Planta 222:234–245

    Article  CAS  PubMed  Google Scholar 

  40. Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, London

    Google Scholar 

  41. McDougall GJ (1991) Cell wall-associated peroxidases and lignification during growth of flax fibres. J Plant Physiol 39:182–186

    Article  Google Scholar 

  42. Kundu A, Sarkar D, Mandal NA, Sinha MK, Bs M (2011) A secondary phloic (bast) fibre-shy (bfs) mutant of dark jute (Corchorus olitorius L.) develops lignified fibre cells but is defective in cambial activity. Plant Growth Regul 67:45–55

    Article  Google Scholar 

  43. Eddy SR (1998) Profile hidden Markov models. Bioinformatics (Oxford, England) 14(9):755–763. https://doi.org/10.1093/bioinformatics/14.9.755

    Article  CAS  Google Scholar 

  44. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–305. https://doi.org/10.1093/nar/gkr931

    Article  CAS  PubMed  Google Scholar 

  45. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–251. https://doi.org/10.1093/nar/gkj149

    Article  CAS  PubMed  Google Scholar 

  46. Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37(4):420–423. https://doi.org/10.1038/s41587-019-0036-z

    Article  CAS  PubMed  Google Scholar 

  47. Eisenhaber B, Wildpaner M, Schultz CJ, Borner GH, Dupree P, Eisenhaber F (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol 133(4):1691–1701. https://doi.org/10.1104/pp.103.023580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed Central  PubMed  Google Scholar 

  50. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic acids Res 40:W597–603. https://doi.org/10.1093/nar/gks400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5(6):e11335. https://doi.org/10.1371/journal.pone.0011335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics (Oxford, England) 31(8):1296–1297. https://doi.org/10.1093/bioinformatics/btu817

    Article  Google Scholar 

  53. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    CAS  PubMed  Google Scholar 

  54. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435. https://doi.org/10.1093/nar/gkn176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327. https://doi.org/10.1093/nar/30.1.325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Koziel SP (2010). Genetic analysis of lignification and secondary wall development in bast fibers of industrial Hemp (Cannabis sativa). Master’s Thesis, University of Alberta, Edmonton, AB, Canada

  57. Ahmed R, Hossain MS, Haque M, Alam M, Islam MS (2019) Modified protocol for RNA isolation from different parts of field-grown jute plant suitable for NGS data generation and quantitative real-time RT-PCR. Afr J Biotechnol 18:647–658. https://doi.org/10.5897/AJB2019.16819

    Article  CAS  Google Scholar 

  58. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods (San Diego, Calif) 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  59. Hossain MS, Ahmed R, Haque MS, Alam MM, Islam MS (2019) Identification and validation of reference genes for real-time quantitative RT-PCR analysis in jute. BMC Mol Biol 20(1):13. https://doi.org/10.1186/s12867-019-0130-2

    Article  PubMed Central  PubMed  Google Scholar 

  60. Kim JE, Kim SJ, Lee BH, Park RW, Kim KS, Kim IS (2000) Identification of motifs for cell adhesion within the repeated domains of transforming growth factor-beta-induced gene, betaig-h3. J Biol Chem 275(40):30907–30915. https://doi.org/10.1074/jbc.M002752200

    Article  CAS  PubMed  Google Scholar 

  61. Hobson N, Deyholos MK (2013) LuFLA1PRO and LuBGAL1PRO promote gene expression in the phloem fibres of flax (Linum usitatissimum). Plant Cell Rep 32:517–528. https://doi.org/10.1007/s00299-013-1383-8

    Article  CAS  PubMed  Google Scholar 

  62. Mokshina N, Chernova T, Galinousky D, Gorshkov O, Gorshkova T (2018) Key stages of fiber development as determinants of bast fiber yield and quality. Fibers 6:20. https://doi.org/10.3390/fib6020020

    Article  CAS  Google Scholar 

  63. Snegireva A, Chernova T, Ageeva M, Lev-Yadun S, Gorshkova T (2015) Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure. AoB Plants. https://doi.org/10.1093/aobpla/plv061

    Article  PubMed Central  PubMed  Google Scholar 

  64. Ito S, Suzuki Y, Miyamoto K, Ueda J, Yamaguchi I (2005) AtFLA11, a fasciclin-like arabinogalactan-protein, specifically localized in sclerenchyma cells. Biosci Biotechnol Biochem 69(10):1963–1969. https://doi.org/10.1271/bbb.69.1963

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Emdadul Mannan Emdad for his technical support during bioinformatics analysis.

Funding

The author(s) received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

MSI and MS Hossain designed the research. MS Hossain carried out the experiments, analyzed the data and wrote the manuscript. BA and MS Hossain contributed in bioinformatics analysis. MWU and NA revised the manuscript. MS Haque and MSI directed and reviewed the manuscript. All the authors read, discussed and approved the final manuscript.

Corresponding author

Correspondence to Md. Shahidul Islam.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.S., Ahmed, B., Ullah, M.W. et al. Genome-wide identification of fasciclin-like arabinogalactan proteins in jute and their expression pattern during fiber formation. Mol Biol Rep 47, 7815–7829 (2020). https://doi.org/10.1007/s11033-020-05858-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05858-w

Keywords

Navigation