Skip to main content
Log in

Genome-wide identification, classification and expression analysis of genes encoding putative fasciclin-like arabinogalactan proteins in Chinese cabbage (Brassica rapa L.)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Fasciclin-like arabinogalactan proteins (FLAs), a subclass of arabinogalactan proteins (AGPs), have both predicted AGP-like glycosylated regions and putative fasciclin (FAS) domains, which may function in cell adhesion and communication. Previous studies have identified 21, 27, and 34 FLAs in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), respectively. In this study, we identified 33 FLAs in the annotated genome of Chinese cabbage (Brassica rapa ssp. pekinensis line Chiifu-401-42). Sequence analysis indicated that FAS domains each contain two highly conserved regions, named H1 and H2, and that 17 FLAs from B. rapa (BrFLAs) possess both of these regions. Prediction of glycosylphosphatidylinositol (GPI) modification sites suggested that 15 BrFLAs were GPI-anchored to the plasma membrane. Additionally, 25 BrFLAs may have been duplicated during the processes that shaped the triplicated genome of the mesopolyploid B. rapa. Expression analyses indicated that BrFLA1, BrFLA11, BrFLA13, BrFLA28 and BrFLA32 were specifically expressed in inflorescence. Meanwhile, BrFLA9 (homologous to AtFLA12) is specifically expressed in stem, and BrFLA6/22 (homologous to AtFLA11) is also highly expressed in stem, suggesting BrFLA6/9/22 may have the same functions as AtFLA11/12 in A. thaliana. Taken together, the identification and bioinformatic analysis of FLAs in B. rapa will open the way for studying their biological functions in plant growth and development as well as evolutionary history of this gene family from A. thaliana to B. rapa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Johnson KL, Jones BJ, Bacic A, Schultz CJ (2003) The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol 133:1911–1925

    Article  PubMed  CAS  Google Scholar 

  2. Faik A, Abouzouhair J, Sarhan F (2006) Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): identification and bioinformatic analyses. Mol Gen Genomics 276:478–494

    Article  CAS  Google Scholar 

  3. Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Priess J (ed) The biochemistry of plants. Academic Press, New York, pp 297–371

    Google Scholar 

  4. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  5. Kieliszewski MJ, Shpak E (2001) Synthetic genes for the elucidation of glycosylation codes for arabinogalactan-proteins and other hydroxyproline-rich glycoproteins. Cell Mol Life Sci 58:1386–1398

    Article  PubMed  CAS  Google Scholar 

  6. Schultz CJ, Rumsewicz MP, Johnson KL, Jones BJ, Gaspar YM, Bacic A (2002) Using genomic resources to guide research directions. The Arabinogalactan protein gene family as a test case. Plant Physiol 129:1448–1463

    Article  PubMed  CAS  Google Scholar 

  7. Ma HL, Zhao J (2010) Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J Exp Bot 61:2647–2668

    Article  PubMed  CAS  Google Scholar 

  8. Showalter AM, Keppler B, Lichtenberg J, Gu DZ, Welch LR (2010) A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol 153:485–513

    Article  PubMed  CAS  Google Scholar 

  9. Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    PubMed  CAS  Google Scholar 

  10. Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291

    Article  PubMed  CAS  Google Scholar 

  11. Sommer-knudsen J, Bacic A, Clarke AE (1998) Hydroxyproline-rich plant glycoproteins. Phytochemistry 47:483–497

    Article  CAS  Google Scholar 

  12. Bacic A, Currie G, Gilson P, Mau S-L, Oxley D, Schultz C, Sommer-Knudsen J, Clarke AE (2000) Structural classes of arabinogalactan-proteins. In: Nothnagel EA, Bacic A, Clarke AE (eds) Cell and developmental biology of arabinogalactan-proteins. Kluwer Academic/Plenum Publishers, Dordrecht, pp 11–23

    Chapter  Google Scholar 

  13. Fincher GB, Stone BA, Clarke AE (1983) Arabinogalactan-proteins: structure, biosynthesis and function. Annu Rev Plant Physiol 34:47–70

    Article  CAS  Google Scholar 

  14. Gaspar YM, Johnson KL, McKenna JA, Bacic A, Schultz CJ (2001) The complex structures of arabinogalactan-proteins and the journey towards a function. Plant Mol Biol 47:161–176

    Article  PubMed  CAS  Google Scholar 

  15. Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  PubMed  CAS  Google Scholar 

  16. Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161

    Article  PubMed  CAS  Google Scholar 

  17. Harwood A, Coates JC (2004) A prehistory of cell adhesion. Curr Opin Cell Biol 16:470–476

    Article  PubMed  CAS  Google Scholar 

  18. Bastiani MJ, Harrelson AL, Snow PM, Goodman CS (1987) Expression of fasciclin I and II glycoproteins on subsets of axon pathways during neuronal development in the grasshopper. Cell 48:745–755

    Article  PubMed  CAS  Google Scholar 

  19. Loopstra C, Puryear J, No E (2000) Purification and cloning of an arabinogalactan-protein from xylem of loblolly pine. Planta 210:686–689

    Article  PubMed  CAS  Google Scholar 

  20. Lafarguette F, Leplé J-C, Déjardin A, Laurans F, Costa G, Lesage-Descauses MC, Pilate G (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164:107–121

    Article  CAS  Google Scholar 

  21. Dahiya P, Findlay K, Roberts K, McCann M (2006) A fasciclin-domain containing gene, ZeFLA11, is expressed exclusively in xylem elements that have reticulate wall thickenings in the stem vascular system of Zinnia elegans cv Envy. Planta 223:1281–1291

    Article  PubMed  CAS  Google Scholar 

  22. Yang SH, Wang HY, Sathyan P, Stasolla C, Loopstra CA (2005) Real-time RT-PCR analysis of loblolly pine (Pinus taeda) arabinogalactan-protein and arabinogalactan-protein-like genes. Physiol Plant 124:91–106

    Article  CAS  Google Scholar 

  23. Huang GQ, Xu WL, Gong SY, Li B, Wang XL, Xu D, Li XB (2008) Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress. Physiol Plant 134:348–359

    Article  PubMed  CAS  Google Scholar 

  24. Shi HZ, Kim YS, Guo Y, Stevenson B, Zhu JK (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32

    Article  PubMed  CAS  Google Scholar 

  25. Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2229–2281

    Google Scholar 

  26. Persson S, Wei H, Milne J, Page GP, Somerville CR (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA 102:8633–8638

    Article  PubMed  CAS  Google Scholar 

  27. MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG (2010) Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J 62:689–703

    Article  PubMed  CAS  Google Scholar 

  28. Li J, Yu M, Geng LL, Zhao J (2010) The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. Plant J 64:482–497

    Article  PubMed  CAS  Google Scholar 

  29. Johnson KL, Kibble NAJ, Bacic A, Schultz CJ (2011) A fasciclin-like arabinogalactan protein (FLA) mutant of Arabidopsis thaliana, fla1, shows defects in shoot regeneration. PLoS One 6:e25154

    Article  PubMed  CAS  Google Scholar 

  30. Wang JH, Smolyar A, Tan K, Liu JH, Kim M, Sun Z-J, Wagner G, Reinherz EL (1999) Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Cell 97:791–803

    Article  PubMed  CAS  Google Scholar 

  31. Kim JE, Jeong HW, Nam JO, Lee BH, Park RW, Kim KS, Kim IS (2000) Identification of motifs for cell adhesion within the repeated domains of the transforming growth factor-beta-induced gene, beta ig-h3. J Biol Chem 275:30907–30915

    Article  PubMed  CAS  Google Scholar 

  32. Kim JE, Kim SJ, Lee BH, Choi JY, Park RW, Park JY, Kim IS (2002) Identification of motifs in fasciclin domains of the transforming growth factor-β-induced matrix protein βig-h3 that interact with the αvβ5 integrin. J Biol Chem 277:46159–46165

    Article  PubMed  CAS  Google Scholar 

  33. Coult NJ, Tisi D, Hohenester E (2003) Novel fold revealed by the structure of a FAS1 domain pair from the insect cell adhesion molecule fasciclin I. Structure (Camb) 11:197–203

    Article  Google Scholar 

  34. Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SY, Bai YQ, Mun JH, Bancroft I, Cheng F, Huang SW, Li XX, Hua W et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  PubMed  CAS  Google Scholar 

  35. Finn RD, Mistry J, Schuster-Bōckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer ELL, Bateman A (2005) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251

    Article  Google Scholar 

  36. Letunic I, Doerks T, Bork P (2011) SMART7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  PubMed  Google Scholar 

  37. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  PubMed  CAS  Google Scholar 

  38. Petersen TN, Brunak S, von Heijine G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  39. Eisenhaber B, Wildpaner M, Schultz CJ, Borner GHH, Duree P, Eisenhaber F (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol 133:1691–1701

    Article  PubMed  CAS  Google Scholar 

  40. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35

    Article  PubMed  CAS  Google Scholar 

  41. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  42. Thompson JD, Gibson TJ, Plewniak F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  43. Schranz ME, Lysak MA, Michell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  PubMed  CAS  Google Scholar 

  44. Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  PubMed  CAS  Google Scholar 

  45. Zhuang J, Xiong AS, Peng RH, Gao F, Zhu B, Zhang J, Fu XY, Jin XF, Chen JM, Zhang Z, Qiao YS, Yao QH (2010) Analysis of Brassica rapa ESTs: gene discovery and expression patterns of AP2/ERF family genes. Mol Biol Rep 37:2485–2492

    Article  PubMed  CAS  Google Scholar 

  46. Yuan J, Chen D, Ren Y, Zhang X, Zhao J (2008) Characteristic and expression analysis of a metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol 146:1637–1650

    Article  PubMed  CAS  Google Scholar 

  47. Cardoza V, Stewart NC Jr (2004) Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev Biol Plant 40:542–551

    Article  CAS  Google Scholar 

  48. Kawamoto T, Noshiro M, Shen M, Nakamasu K, Hashimoto K, Kawashima-Ohya Y, Gotoh O, Kato Y (1998) Structural and phylogenetic analyses of RGD-CAP/βig-h3, a fasciclin-like adhesion protein expressed in chick chondrocytes. Biochim Biophys Acta 1935:288–292

    Google Scholar 

  49. Kieliszewski MJ, Lamport DTA (1994) Extensin: repetitive motifs, functional sites, post-translational codes and phylogeny. Plant J 5:157–172

    Article  PubMed  CAS  Google Scholar 

  50. Shpak E, Leykam JF, Kieliszewski MJ (1999) Synthetic genes for glycoprotein design and the elucidation of hydroxyproline-O-glycosylation codes. Proc Natl Acad Sci USA 96:14736–14741

    Article  PubMed  CAS  Google Scholar 

  51. Shpak E, Barbar E, Leykam JF, Kieliszewski MJ (2001) Contiguous hydroxyproline residues direct hydroxyproline arabinosylation in Nicotiana tabacum. J Biol Chem 276:11272–11278

    Article  PubMed  CAS  Google Scholar 

  52. Zhao ZD, Tan L, Showalter AM, Lamport DT, Kieliszewski MJ (2002) Tomato LeAGP-1 arabinogalactan-protein purified from transgenic tobacco corroborates the Hyp contituity hypothesis. Plant J 31:431–444

    Article  PubMed  CAS  Google Scholar 

  53. Tan L, Leykam JF, Kieliszewski MJ (2003) Glycosylation motifs that direct arabinogalactan addition to arabinogalactan-proteins. Plant Physiol 132:1362–1369

    Article  PubMed  CAS  Google Scholar 

  54. Ito S, Suzuki Y, Miyamoto K, Ueda J, Yamaguchi I (2005) AtFLA11, a fasciclin-like arabinogalactan-protein, specifically localized in sclerenchyma cells. Biosci Biotechnol Biochem 69:1963–1969

    Article  PubMed  CAS  Google Scholar 

  55. Lukens L, Zou F, Lydiate D, Parkin I, Osborn T (2003) Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164:359–372

    PubMed  CAS  Google Scholar 

  56. Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  PubMed  CAS  Google Scholar 

  57. Lim GAC, Jewell EG, Li X, Erwin TA, Love C, Batley J, Spangenberg G, Edwards D (2007) A comparative map viewer integrating genetic maps for Brassica and Arabidopsis. BMC Plant Biol 7:40

    Article  PubMed  Google Scholar 

  58. Parkin IA, Sharpe AG, Lydiate DJ (2003) Patterns of genome duplication within the Brassica napus genome. Genome 46:291–303

    Article  PubMed  CAS  Google Scholar 

  59. Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal VK, Good AG, Parkin IA (2005) Complexities of chromosome landing in a highly duplicated genome: toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics 171:1977–1988

    Article  PubMed  CAS  Google Scholar 

  60. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  PubMed  CAS  Google Scholar 

  61. Lysak MA, Cheung K, Kitschke M, Bureš P (2007) Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol 145:402–410

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Author would like to thank Dr Carolyn Schultz (The University of Adelaide, School of Agriculture, Food and Wine, Australia) for kindly providing the Perl script (protein bias) and for giving us helpful suggestions, Dr Xixiang Li (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China) for the generous gift of the Chiifu-401-42 seeds. This project was supported by the National Natural Science Foundation of China (31100236) and the Wuhan City Chen Guang program (201271031402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Xiaoming.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, L., Xiaoming, W. Genome-wide identification, classification and expression analysis of genes encoding putative fasciclin-like arabinogalactan proteins in Chinese cabbage (Brassica rapa L.). Mol Biol Rep 39, 10541–10555 (2012). https://doi.org/10.1007/s11033-012-1940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1940-1

Keywords

Navigation