Skip to main content
Log in

Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): identification and bioinformatic analyses

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

An Erratum to this article was published on 17 October 2006

Abstract

Putative plant adhesion molecules include arabinogalactan-proteins having fasciclin-like domains. In animal, fasciclin proteins participate in cell adhesion and communication. However, the molecular basis of interactions in plants is still unknown and none of these domains have been characterized in cereals. This work reports the characterization of 34 wheat (Triticum aestivum) and 24 rice (Oryza sativa) Fasciclin-Like Arabinogalactan-proteins (FLAs). Bioinformatics analyses show that cereal FLAs share structural characteristics with known Arabidopsis FLAs including arabinogalactan-protein and fasciclin conserved domains. At least 70% of the wheat and rice FLAs are predicted to be glycosylphosphatidylinositol-anchored to the plasma membranes. Expression analyses determined from the relative abundance of ESTs in the publicly available wheat EST databases and from RNA gel blots indicate that most of these genes are weakly expressed and found mainly in seeds and roots. Furthermore, most wheat genes were down regulated by abiotic stresses except for TaFLA9 and 12 where cold treatment induces their expression in roots. Plant fasciclin-like domains were predicted to have 3-D homology with FAS1 domain of the fasciclin I insect neural cell adhesion molecule with an estimated precision above 70%. The structural analysis shows that negatively charged amino acids are concentrated along the β1-α3-α4-β2 edges, while the positively charged amino acids are concentrated on the back side of the folds. This highly charged surface distribution could provide a way of mediating protein–protein interactions via electrostatic forces similar to many other adhesion molecules. The identification of wheat FLAs will facilitate studying their function in plant growth and development and their role in stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bacic A, Currie G, Gilson P, Mau S-L, Oxley D, Schultz C, Sommer-Knudsen J, Clarke AE (2000) Structural classes of arabinogalactan- proteins. In: Nothnagel EA, Bacic A, Clarke AE (eds) Cell and developmental biology of arabinogalactan-proteins. Kluwer Academic/Plenum Publishers, Dordrecht, pp 11–23

    Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  CAS  Google Scholar 

  • Boyington JC, Motyka SA, Schuck P, Brooks AG, Sun PD (2000) Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature 405:537–543

    Article  PubMed  CAS  Google Scholar 

  • Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2229

    Article  PubMed  CAS  Google Scholar 

  • Coult NJ, Tisi D, Hohenester E (2003) Novel fold revealed by the structure of a FSA1 domain pair from the insect cell adhesion molecule fasciclin I. Structure (Camb) 11:197–203

    Article  Google Scholar 

  • Dahiya P, Findlay K, Roberts k, McCann M (2006) A fasciclin-domain containing gene, ZeFLA11, is expressed exclusively in xylem elements that have reticulate wall thickenings in the stem vascular system of Zinnia elegans cv Envy. Planta 223:1281–1291

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vinicity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (eds) Atlas of Protein Sequence Structur, vol 5, Suppl. 3. National Biomedical Research Foundation, Washington, DC, pp 345–352

  • Eisenhaber B, Wildpaner MJ SC, Borner GHH, Dupree P, Eisenhaber F (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol 133:1691–1701

    Article  PubMed  CAS  Google Scholar 

  • Elkins T, Hortsch M, Bieber AJ, Goodman CS (1990) Drosophila fasciclin 1 is a novel homophilic adhesion molecule that along with fasciclin III can mediates cell sorting. J Cell Biol 110:1825–1832

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) Phylogeny Inference Package (PHYLIP). Version 3.5. University of Washington, Seattle

  • Fincher GB, Sawyer WH, Stone BA (1974) Chemical and Physical Properties of an Arabinogalactan-Peptide from Wheat Endosperm. Biochem J 139:535–545

    PubMed  CAS  Google Scholar 

  • Gaspar YM, Nam J, Schultz CJ, Lee LY, Gilson PR, Gelvin SB, Bacic A (2004) Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of agrobacterium transformation. Plant Physiol. 135:2162–2171

    Article  PubMed  CAS  Google Scholar 

  • Gleeson PA, McNamara M, Wettenhall REH, Stone BA, Fincher GB (1989) Characterization of the hydroxyproline-rich protein core of an arabinogalactan-protein secreted from suspension-cultured Lolium multiflorum (Italian ryegrass) endosperm cells. Biochem J 264:857–862

    PubMed  CAS  Google Scholar 

  • Godzik A (2003) Fold recognition methods. Methods Biochem Anal 44:525–546

    PubMed  CAS  Google Scholar 

  • Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online–a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33(suppl 2):W557–W559

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Nakai K (2006) Protein subcellular localization prediction with WoLF PSORT. In: Proceedings of the 4th annual Asia Pacific bioinformatics conference APBC06, Taipei, Taiwan, pp 39–48

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Johnson KJ, Jones BJ, Bacic A, Schultz CJ (2003) The fasciclin-like arabinogalactan proteins of arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol 133:1911–1925

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci (CABIOS) 8:275–282

    CAS  Google Scholar 

  • Kawamoto T, Noshiro M, Shen M, Nakamasu K, Hashimoto K, Kawashima-Ohya Y, Gotoh O, Kato Y (1998) Structural and phylogenetic analyses of RGD-CAP/beta ig-h3, a fasciclin-like adhesion protein expressed in chick chondrocytes. Biochim Biophys Acta 1395:288–292

    PubMed  CAS  Google Scholar 

  • Kieliszewski MJ, Leykam JF, Lamport DTA (1990) Structure of the threonine-rich extensin from Zea mays. Plant Physiol 92:316–326

    Article  PubMed  CAS  Google Scholar 

  • Kim JE, Jeong HW, Nam JO, Lee BH, Park RW, Kim KS, Kim IS (2000) Identification of motifs for cell adhesion within the repeated domains of the transforming growth factor-beta-induced gene, beta ig-h3. J Biol Chem 275:30907–30915

    Article  PubMed  CAS  Google Scholar 

  • Kim JE, Kim SJ, Lee BH, Choi JY, Park RW, Park JY, Kim IS (2002) Identification of motifs in fasciclin domains of the transforming growth factor-b-induced matrix protein βig-h3 that interact with the αvβ5 integrin. J Biol Chem 277:46159–46165

    Article  PubMed  CAS  Google Scholar 

  • Kronegg J, Buloz D (1999) Detection/prediction of GPI cleavage site (GPI-anchor) in a protein (DGPI) retrieved from http://129.194.185.165/dgpi/

  • Lafarguette F, Leplé J-C, Déjardin A, Laurans F, Costa G, Lesage-Descauses MC, Pilate G (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164:107–121

    Article  CAS  Google Scholar 

  • Matsuoka K, Watanabe N, Nakamura K (1995) O-glycosylation of a precursor to sweet potato vacuolar protein, sporamin, expressed in tobacco cells. Plant J 8:877–889

    PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331

    Article  PubMed  CAS  Google Scholar 

  • Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291

    Article  PubMed  CAS  Google Scholar 

  • Persson S, Wei H, Milne J, Page GP, Somerville CR (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA 102:8633–8638

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schultz CJ, Rumsewicz MP, Johnson KL, Jones BJ, Gaspar YM, Bacic A (2002) Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiol 129:1448–1463

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Kim YS, Guo Y, Stevenson B, Zhu JK (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32

    Article  PubMed  CAS  Google Scholar 

  • Shimizu M, Igasaki T, Yamada M, Yuasa K, Hasegawa J, Kato T, Tsukagoshi H, Nakamura K, Fukuda H, Matsuoka K (2005) Experimental determination of proline hydroxylation and hydroxyproline arabinogalactosylation motifs in secretory protein. Plant J 42:877–889

    Article  PubMed  CAS  Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  PubMed  CAS  Google Scholar 

  • Soroka V, Kiryushko D, Novitskaya V, Rønn LCB, Poulsen FM, Holm A, Bock E, Berezin V (2002) Induction of neuronal differentiation by a peptide corresponding to the homophilic binding site of the second Ig module of the neural cell adhesion molecule. J Biol Chem 277:24676–24683

    Article  PubMed  CAS  Google Scholar 

  • Tan L, Leykam JF, Kieliszewski MJ (2003) Glycosylation motifs that direct arabinogalactan addition to arabinogalactan-proteins. Plant Physiol 132:1362–1369

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Smolyar A, Tan K, Liu JH, Kim M, Sun Z-J, Wagner G, Reinherz EL (1999) Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Cell 97:791–803

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Author would like to thank Dr. Allan Showalter for critical reading of the manuscript and for valuable comments, and Matthew Shipp for his assistance in making the Figures. Dr. Harvey Ballard is gratefully thanked for his precious discussion on FLAs phylogeny.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Faik.

Additional information

Communicated by R. Hagemann.

Nucleotide sequence data reported are available in the DBJ/EMBL/GenBank databases under the accession numbers: TaFLA1, DQ872374; TaFLA2, DQ872375; TaFLA3, DQ872376; TaFLA4, DQ872377; TaFLA5, DQ872378; TaFLA6, DQ872379; TaFLA7, DQ872380; TaFLA8, DQ872381; TaFLA9, DQ872382; TaFLA10, DQ872383; TaFLA11, DQ872384; TaFLA12, DQ872385; TaFLA13, DQ872386; TaFLA14, DQ872387; TaFLA15, DQ872388; TaFLA16, DQ872389; TaFLA17, DQ872390; TaFLA18, DQ872391; TaFLA19, DQ872392; TaFLA20, DQ872393; TaFLA21, DQ872394; TaFLA22, DQ872395; TaFLA23, DQ872396; TaFLA24, DQ872397; TaFLA25, DQ872398; TaFL26, DQ872399; TaFLA27, DQ872400; TaFLA28, DQ872401; TaFLA29, DQ872402; TaFLA30, DQ872403; TaFLA31, DQ872404; TaAGP1, DQ872405; TaFLA33, DQ872406; TaFLA34, DQ872407. If requested the database will withhold release of data until publication.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00438-006-0178-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faik, A., Abouzouhair, J. & Sarhan, F. Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): identification and bioinformatic analyses. Mol Genet Genomics 276, 478–494 (2006). https://doi.org/10.1007/s00438-006-0159-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0159-z

Keywords

Navigation