Skip to main content
Log in

Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Aldehyde dehydrogenase (ALDH) is essential for scavenging redundant aldehydes when plants are exposed to stress. The aim of the present study was to validate the ectopic expression of the ScALDH21 gene, which is isolated from Syntrichia caninervis, an extremely drought-tolerant moss, to improve drought tolerance in cotton (Gossypium hirsutum L.). In our study, the ScALDH21-transformed cotton was identified via PCR, RT-PCR, and DNA gel blotting, and the growth and physiological characteristics related to drought tolerance were compared between the transgenic cotton (TC) and non-transgenic cotton (NT) grown in a greenhouse and in field conditions. The results indicated that TC accumulated approximately 11.8–304 % more proline than did NT under drought stress, and produced a lower concentration of lipid peroxidation-derived reactive aldehydes and had a higher peroxidase activity under oxidative stress. Moreover, TC showed reduced loss of the net photosynthetic rate compared with NT. Under field conditions, TC showed greater plant height, larger bolls, and greater cotton fiber yield than NT, but no significant difference in fiber quality between TC and NT following different water-withholding treatments. These results suggest that overexpression of ScALDH21 can greatly improve the drought tolerance of cotton without reduction in yield and fiber quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C-3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Bayley C, Trolinder N, Ray C, Morgan M, Quisenberry JE, Ow DW (1992) Engineering 2,4-D resistance into cotton. Theor Appl Genet 83:645–649

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary B, Yasmeen A, Husnain T, Riazuddin S (1999) Miniscale genomic DNA extraction from cotton. Plant Mol Biol Rep 17:1–7

    Article  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55(407):2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chen XB, Zeng Q, Wood AJ (2002) The stress-responsive Tortula ruralis gene ALDH21A1 describes a novel eukaryotic aldehyde dehydrogenase protein family. J Plant Physiol 159(7):677–684

    Article  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Deikman J, Petracek M, Heard JE (2012) Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr Opin Biotechnol 23(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM (2000) Transgenic approaches to crop improvement. J Exp Bot 51:487–496

    Article  CAS  PubMed  Google Scholar 

  • Eltayeb AE, Yamamoto S, Habora MEE, Matsukubo Y, Aono M, Tsujimoto H, Tanaka K (2010) Greater protection against oxidative damages imposed by various environmental stresses in transgenic potato with higher level of reduced glutathione. Breeding Sci 60(2):101–109

    Article  CAS  Google Scholar 

  • Fu XZ, Khan EU, Hu SS, Fan QJ, Liu JH (2011) Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Environ Exp Bot 74:106–113

    Article  CAS  Google Scholar 

  • Gale M (2002) Applications of molecular biology and genomics to genetic enhancement of crop tolerance to abiotic stress a discussion document. ISC Secretariat, Food and Agriculture Organization of the United Nation, New York

  • He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46(11):1848–1854

    Article  CAS  PubMed  Google Scholar 

  • Hozain M, Abdelmageed H, Lee J, Kang M, Fokar M, Allen RD, Holaday AS (2012) Expression of AtSAP5 in cotton up-regulates putative stress-responsive genes and improves the tolerance to rapidly developing water deficit and moderate heat stress. J Plant Physiol 169:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, McNeilly T, Collins JC (2000) Accumulation of amino acids, proline, and carbohydrates in response to aluminum and manganese stress in maize. J Plant Nutr 23:1303–1314

    Article  CAS  Google Scholar 

  • Kirch HH, Bartels D, Wei YL, Schnable PS, Wood AJ (2004) The ALDH gene superfamily of Arabidopsis. Trends Plant Sci 9(8):371–377

    Article  CAS  PubMed  Google Scholar 

  • Kochba J, Lavee S, Spiegel PR (1977) Differences in peroxidase activity and isoenzymes in embryogenic and nonembryogenic ‘‘Shamouti’’ orange ovular callus lines. Plant Cell Physiol 18(2):463–467

    CAS  Google Scholar 

  • Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29(6):1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G, Blumwald E, Payton P, Zhang H (2013) Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS One 8:5

    Article  Google Scholar 

  • Li MF, Li ZM, Li SF, Guo SJ, Meng QW, Li G, Yang XH (2014) Genetic engineering of glycine betaine biosynthesis reduces heat-enhanced photoinhibition by enhancing antioxidative defense and alleviating lipid peroxidation in tomato. Plant Mol Biol Rep 32:42–51

    Article  CAS  Google Scholar 

  • Light GG, Mahan JR, Roxas VP, Allen RD (2005) Transgenic cotton (Gossypium hirsutum L.) seedlings expressing a tobacco glutathione S-transferase fail to provide improved stress tolerance. Planta 222(2):346–354

    Article  CAS  PubMed  Google Scholar 

  • Liu GZ, Li XL, Jin SX, Liu XY, Zhu LF, Nie YC, Zhang XL (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PloS One 9(1):e86895

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20(3):233–248

    Article  CAS  Google Scholar 

  • Lv SL, Lian LJ, Tao PL, Li ZX, Zhang KW, Zhang JR (2009) Overexpression of Thellungiella halophila H(+)-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta 229(4):899–910

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Ballesta MD, Carvajal M (2014) New challenges in plant aquaporin biotechnology. Plant Sci 217:71–77

    Article  Google Scholar 

  • Park SH, Bang SW, Jeong JS, Jung H, Christian M, Redillas FR, Kim HI, Lee KH, Kim YS, Kim JK (2012) Analysis of the APX, PGD1 and R1G1B constitutive gene promoters in various organs over three homozygous generations of transgenic rice plants. Planta 235(6):1397–1408

    Article  CAS  PubMed  Google Scholar 

  • Pasapula V, Shen GX, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen JA, Qiu XY, Zhu LF, Zhang XL et al (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fiber yield in the field conditions. Plant Biotechnol J 9(1):88–99

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11(2):122–127

    Article  CAS  Google Scholar 

  • Rodrigues SM, Andrade MO, Gomes APS, DaMatta FM, Baracat-Pereira MC, Fontes EP (2006) Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Exp Bot 57(9):1909–1918

    Article  CAS  PubMed  Google Scholar 

  • Shamim Z, Rashid B, Rahman SU, Husnain T (2013) Expression of drought tolerance in transgenic cotton. ScienceAsia 39:1–11

    Article  CAS  Google Scholar 

  • Sinclair TR (2011) Challenges in breeding for yield increase for drought. Trends Plant Sci 16(6):289–293

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, Thompson DC, Vasiliou V (2013) Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med 56:89–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song P, Allen RD (1997) Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display. Biochim Biophys Acta 1351:305–312

    Article  CAS  PubMed  Google Scholar 

  • Sophos NA, Pappa A, Ziegler TL, Vasiliou V (2001) Aldehyde dehydrogenase gene superfamily: the 2000 update. Chem-Biol Interact 130(1–3):323–337

    Article  PubMed  Google Scholar 

  • Sunkar R, Bartels D, Kirch HH (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J 35(4):452–464

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Bacic A (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137(3):791–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay RK, Gupta A, Ranjan S, Singh R, Pathre UV, Nath P, Sane AP (2014) The EAR motif controls the early flowering and senescence phenotype mediated by over-expression of SlERF36 and is partly responsible for changes in stomatal density and photosynthesis. PLoS ONE 9:7

    Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu JH, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Visarada K, Meena K, Aruna C, Srujana S, Saikishore N, Seetharama N (2009) Transgenic breeding: perspectives and prospects. Crop Sci 49(5):1555–1563

    Article  CAS  Google Scholar 

  • Wenzel P, Muller J, Zurmeyer S, Schuhmacher S, Schulz E, Oelze M, Pautz A, Kawamoto T, Wojnowski L, Kleinert H et al (2008) ALDH-2 deficiency increases cardiovascular oxidative stress—evidence for indirect antioxidative properties. Biochem Biophys Res Commun 367(1):137–143

    Article  CAS  PubMed  Google Scholar 

  • Xu SM, Brill E, Llewellyn DJ, Furbank RT, Ruan YL (2012) Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Mol Plant 5(2):430–441

    Article  CAS  PubMed  Google Scholar 

  • Xu XZ, Guo RR, Cheng CX, Zhang HJ, Zhang YC, Wang XP (2013) Overexpression of ALDH2B8, an aldehyde dehydrogenase gene from grapevine, sustains Arabidopsis growth upon salt stress and protects plants against oxidative stress. Plant Cell Tiss Org 114(2):187–196

    Article  CAS  Google Scholar 

  • Yan JQ, He CX, Wang J, Mao ZH, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45(8):1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Yang HL, Zhang DY, Wang JC, Wood AJ, Zhang YM (2012) Molecular cloning of a stress-responsive aldehyde dehydrogenase gene ScALDH21 from the desiccation-tolerant moss Syntrichia caninervis and its responses to different stresses. Mol Biol Rep 39(3):2645–2652

    Article  CAS  PubMed  Google Scholar 

  • Yue YS, Zhang MC, Zhang JC, Tian XL, Duan LS, Li ZH (2012) Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63(10):3741–3748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B (2012) Transgenic cotton methods and protocols. Methods in molecular biology (Series Editor John M. Walker), pp. 71–78. Humana Press, New York

  • Zhang H, Shen G, Kuppu S, Gaxiola R, Payton P (2011) Creating drought-and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene. Plant Signal Behav 6(6):861–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang KW, Wang J, Lian LJ, Fan WJ, Guo N, Lv SL (2012) Increased chilling tolerance following transfer of a betA gene enhancing glycinebetaine synthesis in cotton (Gossypium hirsutum L.). Plant Mol Biol Rep 30(5):1158–1171

    Article  Google Scholar 

  • Zhang DY, Yang HL, Li XS, Li HY, Wang YC (2014) Overexpression of Tamarix albiflonum TaMnSOD increases drought tolerance in transgenic cotton. Mol Breed 34(1):1–11

    Article  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fund from The West Light Talents Cultivation Program of Chinese Academy of Sciences (XBBS201202); The National Basic Research Program of China (2014CB954203) and the High Technology Research and Development Program of Xinjiang Autonomous Region (201411104). We thank master students Bei Gao, Jingling Pei and Ming Cai from Key laboratory of biogeography and bioresource in arid land, Xinjiang institute of Ecology and Geography, Chinese Academy of Science for their help with this work; We are grateful to Professor Qingping Kong and Professor Jianhui Xu from the Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, China, for their support in the field work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daoyuan Zhang or Haiyan Lan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8622 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhang, D., Li, X. et al. Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Mol Breeding 36, 34 (2016). https://doi.org/10.1007/s11032-015-0422-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0422-2

Keywords

Navigation