Skip to main content
Log in

Development of a high-density cranberry SSR linkage map for comparative genetic analysis and trait detection

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Since its domestication 200 years ago, breeding of the American cranberry (Vaccinium macrocarpon) has relied on phenotypic selection because applicable resources for molecular improvement strategies such as marker-assisted selection (MAS) remain limited. To enable MAS in cranberry, the first high-density SSR linkage map with 541 markers representing all 12 cranberry chromosomes was constructed for the CNJ02-1 progeny from a cross of elite cultivars, CNJ97-105-4 and NJ98-23. The population was phenotyped for a 3-year period for total yield (TY), mean fruit weight (MFW), and biennial bearing index (BBI), and data were analyzed using mixed models and best linear unbiased predictors (BLUPs). Significant differences between genotypes were observed for all traits. Quantitative trait loci (QTL) analyses using BLUPs identified four MFW QTL on three linkage groups (LGs), three TY QTL on three LGs, and one BBI QTL which co-localized with a TY QTL. Local BLAST of a cranberry nuclear genome assembly identified homologous sequences for the mapped SSRs which were then anchored to 12 pseudo-chromosomes using the linkage map information. Analyses comparing coding regions (CDS) anchored in the cranberry linkage map with grape, kiwifruit, and tomato genomes were performed. Moderate micro-synteny between the cranberry and kiwifruit genomes was detected, although none of the regions overlapped with the QTL identified in this study. The linkage map, QTL, and elite genotypic constitutions identified herein may be applied in subsequent cranberry MAS programs for the development of new cultivars, and potential marker transferability should allow for comparative genomic studies within economically important Vaccinium species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alston JM, Medellín-azuara J, Saitone TL (2014) Economic impact of the North American cranberry industry. pp 3–45. http://uscranberries.com/Images/News/GeneralFolder/EIReport20140814.pdf

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anderberg AA, Rydin C, Källersjö M (2002) Phylogenetic relationships in the order Ericales s.l.: analyses of molecular data from five genes from the plastid and mitochondrial genomes. Am J Bot 89:677–687

    Article  CAS  PubMed  Google Scholar 

  • Bassil N, Oda A, Hummer KE (2009) Blueberry microsatellite markers identify cranberry cultivars. Acta Hort 810:181–186

    CAS  Google Scholar 

  • Bates D, Mächler M, Bolker B (2014) Fitting linear mixed-effects models using lme4. J Stat Softw. arXiv:1406.5823

  • Ben Chaim A, Paran I, Grube RC, Jahn M, van Wijk R, Peleman J (2001) QTL mapping of fruit-related traits in pepper (Capsicum annuum). Theor Appl Genet 102:1016–1028

    Article  Google Scholar 

  • Boches PS, Bassil NV, Rowland LJ (2005) Microsatellite markers for Vaccinium from EST and genomic libraries. Mol Ecol Notes 5:657–660. doi:10.1111/j.1471-8286.2005.01025.x

    Article  CAS  Google Scholar 

  • Boches PS, Rowland LJ, Hummer K, Basil NV (2006) Cross-species amplification of SSRs in the genus Vaccinium. Acta Hort 715:119–127

    Google Scholar 

  • Bruederle LP, Hugan MS, Dignan JM, Vorsa N (1996) Genetic variation in natural populations of the large cranberry, Vaccinium macrocarpon Ait. (Ericaceae). Bull Torrey Bot Club 123(1):41–47

    Article  Google Scholar 

  • Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chancerel E, Lamy JB, Lesur I, Noirot C, Klopp C, Ehrenmann F, Boury C, Le Provost G, Label P, Lalanne C, Léger V, Salin F, Gion JM, Plomion C (2013) High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination. BMC Biol 11:50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clark JR, Finn CE (2010) Register of new fruit and nut cultivars list 45. HortScience 45:716–756

    Google Scholar 

  • Darrow GM, Camp W (1945) Vaccinium hybrids and the development of new horticultural material. Bull Torrey Bot Club 72:1–21

    Article  Google Scholar 

  • Davenport JR (1996) The effect of nitrogen fertilizer rates and timing on cranberry yield and fruit quality. J Am Soc Hortic Sci 121:1089–1094

    Google Scholar 

  • DeVetter LW, Harbut R, Colquhoun J (2013) Bud development, return bloom, and external bud appearance differ among cranberry cultivars. J Am Soc Hortic Sci 138:338–343

    Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTL controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31

    Article  CAS  Google Scholar 

  • Durand JB, Guitton B, Peyhardi J, Holtz Y, Guédon Y, Trottier C, Costes E (2013) New insights for estimating the genetic value of segregating apple progenies for irregular bearing during the first years of tree production. J Exp Bot 64:5099–5113

    Article  CAS  PubMed  Google Scholar 

  • Dweikat IM, Lyrene PM (1988) Production and viability of unreduced gametes in triploid interspecific blueberry hybrids. Theor Appl Genet 76:555–559

    Article  CAS  PubMed  Google Scholar 

  • Eady FC, Eaton GW (1972) The role of gibberellic acid and gibberellin-like substances in the dormancy of the cranberry. Can J Plant Sci 52:263–271

    Article  CAS  Google Scholar 

  • Eaton G, Kyte TR (1978) Yield component analysis in the cranberry. J Am Soc Hortic Sci 103:578–583

    Google Scholar 

  • Eaton GW, MacPherson EA (1978) Morphological components of yield in cranberry. Hortic Res 17:73–82

    Google Scholar 

  • Eaton GW, Shawa AY, Bowen PA (1983) Productivity of individual cranberry uprights in Washington and British Columbia. Sci Hortic 20:179–184. doi:10.1016/0304-4238(83)90138-3

    Article  Google Scholar 

  • Elle E (1996) Reproductive trade-offs in genetically distinct clones of Vaccinium macrocarpon, the American cranberry. Oecologia 107:61–70

    Article  Google Scholar 

  • Fajardo D, Morales J, Zhu H, Steffan S, Harbut R, Bassil N, Hummer K, Polashock J, Vorsa N, Zalapa J (2012) Discrimination of American cranberry cultivars and assessment of clonal heterogeneity using microsatellite markers. Plant Mol Biol Report 31:1–8

    Google Scholar 

  • Fajardo D, Senalik D, Ames M, Huayu Z, Steffan SA, Harbut R, Polashock J, Vorsa N, Gillespie E, Kron K, Zalapa JE (2013) Complete plastid genome sequence of Vaccinium macrocarpon: structure, gene content, and rearrangements revealed by next generation sequencing. Tree Genet Genomes 9:489–498

    Article  Google Scholar 

  • Fajardo D, Schlautman B, Steffan S, Polashock J, Vorsa N, Zalapa J (2014) The American cranberry mitochondrial genome reveals the presence of selenocysteine (tRNA-Sec and SECIS) insertion machinery in land plants. Gene 536:336–343

    Article  CAS  PubMed  Google Scholar 

  • Georgi L, Herai R, Vidal R, Falsarella Carazzolle M, Guimaraes Pereira G, Polashock J, Vorsa N (2011) Cranberry microsatellite marker development from assembled next-generation genomic sequence. Mol Breed 30:227–237. doi:10.1007/s11032-011-9613-7

    Article  Google Scholar 

  • Georgi L, Johnson-Cicalese J, Honig J, Parankush Das S, Rajah VD, Bhattacharya D, Bassil N, Rowland LJ, Polashock J, Vorsa N (2013) The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci. Theor Appl Genet. doi:10.1007/s00122-012-2010-8

    PubMed  Google Scholar 

  • Goldstein H (2011) Multilevel statistical models, 4th edn. Wiley, West Sussex

    Google Scholar 

  • Guitton B, Kelner JJ, Velasco R, Gardiner SE, Chagné D, Costes E (2012) Genetic control of biennial bearing in apple. J Exp Bot 63:131–149. doi:10.1093/jxb/err261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall SH, Galletta GJ (1971) Comparative chromosome morphology of diploid Vaccinium species. J Am Soc Hortic Sci 96:289–292

    Google Scholar 

  • Holland J, Nyquist W, Cervantes-Martinez C (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Howell AB, Vorsa N, Der Marderosian A, Foo LY (1998) Inhibition of the adherence of P-fimbriated Escherichia coli to uroepithelial-cell surfaces by proanthocyanidin extracts from cranberries. N Engl J Med 339:1085–1086

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Ding J, Deng D, Tang W, Sun H et al (2013) Draft genome of the kiwifruit Actinidia chinensis. Nat Commun 4:2640. doi:10.1038/ncomms3640

    PubMed Central  PubMed  Google Scholar 

  • Johnson-Cicalese J, Polashock JJ, Honig J, Vaiciunas J, Ward DL, Vorsa N (2015) Heritability of fruit rot resistance in American cranberry. J Am Soc Hortic Sci 140(3):233–242

    Google Scholar 

  • Jonkers H (1979) Biennial bearing in apple and pear: a literature survey. Sci Hortic 11:303–317

    Article  CAS  Google Scholar 

  • Kallsen CE, Parfitt DE, Holtz B (2007) Early differences in the intensity of alternate bearing among selected pistachio genotypes. HortScience 42:1740–1743

    Google Scholar 

  • Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661

    Article  Google Scholar 

  • Khaembah EN, Irving LJ, Thom ER, Faville MJ, Easton HS, Matthew C (2013) Leaf Rubisco turnover in a perennial ryegrass (Lolium perenne L.) mapping population: genetic variation, identification of associated QTL, and correlation with plant morphology and yield. J Exp Bot 64:1305–1316

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Liu S, Liu D, Wei Y, Liu C, Yang Y, Tao C, Liu W (2014) Exploiting EST databases for the development and characterization of EST-SSR markers in blueberry (Vaccinium) and their cross-species transferability in Vaccinium spp. Sci Hortic 176:319–329. doi:10.1016/j.scienta.2014.07.026

    Article  CAS  Google Scholar 

  • Lowe KM, Riaz S, Walker MA (2009) Variation in recombination rates across Vitis species. Tree Genet Genomes 5:71–80

    Article  Google Scholar 

  • Lyrene P, Vorsa N, Ballington J (2003) Polyploidy and sexual polyploidization in the genus Vaccinium. Euphytica. doi:10.1023/A:1025608408727

    Google Scholar 

  • Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T (2015) A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. doi:10.1111/nph.13264

    PubMed  Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E et al (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • McArthur DAJ, Eaton GW (1989) Cranberry growth and yield response to fertilizer and paclobutrazol. Sci Hortic 38:131–146

    Article  Google Scholar 

  • Mccown BH, Zeldin EL (2003) ‘HyRed’, an early, high fruit color cranberry hybrid. HortScience 38:304–305

    Google Scholar 

  • Ortiz R, Vorsa N (1998) Tetrad analysis with translocation heterozygotes in cranberry (Vaccinium macrocarpon Ait.): interstitial chiasma and directed segregation of centromeres. Hereditas 129:75–84

    Article  Google Scholar 

  • Oudemans PV, Caruso FL, Stretch AW (1998) Cranberry fruit rot in the Northeast: a complex disease. Plant Dis 82:1176–1184

    Article  Google Scholar 

  • Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J (2012) A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biol 10:84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-Sequencing for plant breeding and genetics. Plant Genome J 5:92–102. doi:10.3835/plantgenome2012.05.0005

    Article  CAS  Google Scholar 

  • Polashock J, Vorsa N (2002) Development of SCAR markers for DNA fingerprinting and germplasm analysis of American cranberry. J Am Soc Hortic Sci 127:677–684

    CAS  Google Scholar 

  • Polashock J, Zelzion E, Fajardo D, Zalapa J, Georgi L, Bhattacharya D, Vorsa N (2014) The American cranberry: first insights into the whole genome of a species adapted to bog habitat. BMC Plant Biol 14:165. doi:10.1186/1471-2229-14-165

    Article  PubMed Central  PubMed  Google Scholar 

  • Qu L, Hancock JF (1997) Randomly amplified polymorphic DNA- (RAPD-) based genetic linkage map of blueberry derived from an interspecific cross between diploid Vaccinium darrowii and tetraploid V. corymbosum. J Am Soc Hortic Sci 122:69–73

    CAS  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Roper TR, Klueh JS (1994) Removing new growth reduced fruiting in cranberry. HortScience 29:199–201

    Google Scholar 

  • Roper TR, Vorsa N (1997) Cranberry: botany and horticulture. In: Janick J (ed) Hortic Rev 21. doi:10.1002/9780470650660.ch7

  • Rowland LJ, Levi A (1994) RAPD-based genetic linkage map of blueberry derived from a cross between diploid species (Vaccinium darrowi and V. elliottii). Theor Appl Genet 87:863–868

    Article  CAS  PubMed  Google Scholar 

  • Rowland L, Dhanaraj A, Polashock JJ, Arora R (2003) Utility of blueberry-derived EST-PCR primers in related Ericaceae species. HortScience 38:1428–1432

    CAS  Google Scholar 

  • Rowland LJ, Ogden EL, Bassil N, Buck EJ, McCallum S, Graham J, Brown A, Wiedow C, Campbell AM, Haynes KG, Vinyard BT (2014) Construction of a genetic linkage map of an interspecific diploid blueberry population and identification of QTL for chilling requirement and cold hardiness. Mol Breed 34:2033–2048. doi:10.1007/s11032-014-0161-9

    Article  CAS  Google Scholar 

  • Sadok IB, Celton J-M, Essalouh L, El Aabidine AZ, Garcia G, Martinez S, Grati-Kamoun N, Rebai A, Costes E, Khadari B (2013) QTL mapping of flowering and fruiting traits in olive. PLoS ONE. doi:10.1371/journal.pone.0062831

    PubMed Central  PubMed  Google Scholar 

  • Schlautman B, Fajardo D, Bougie T, Wiesman E, Polashock J, Vorsa N, Steffan S, Zalapa J (2015) Development and validation of 697 novel polymorphic genomic and EST-SSR markers in the American cranberry (Vaccinium macrocarpon Ait.). Molecules 20:2001–2013. doi:10.3390/molecules20022001

    Article  PubMed  Google Scholar 

  • Sewell MM, Bassoni RA, Megraw RA, Wheeler NC, Neale DB (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theor Appl Genet 104:214–222

    Article  CAS  PubMed  Google Scholar 

  • Shawa A, Eaton GW, Bowen PA (1981) Cranberry yield components in Washington and British Columbia. J Am Soc Hortic Sci 106:474–477

    Google Scholar 

  • Shi T, Huang H, Barker MS (2010) Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. Ann Bot 106:497–504

    Article  PubMed Central  PubMed  Google Scholar 

  • Singh AP, Wilson T, Kalk AJ, Cheong J, Vorsa N (2009) Isolation of specific cranberry flavonoids for biological activity assessment. Food Chem 116:963–968. doi:10.1016/j.foodchem.2009.03.062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith HH, Samach A (2013) Constraints to obtaining consistent annual yields in perennial tree crops. I: heavy fruit load dominates over vegetative growth. Plant Sci 207:158–167

    Article  CAS  PubMed  Google Scholar 

  • Smith MW, Shaw RG, Chapman JC, Owen-Turner J, Lee LS, McRae KB, Jorgensen KR, Mungomery WV (2004) Long-term performance of “Ellendale” mandarin on seven commercial rootstocks in sub-tropical Australia. Sci Hortic 102:75–89

    Article  Google Scholar 

  • Stevenson MT, Shackel KA (1998) Alternate bearing in pistachio as a masting phenomenon: construction cost of reproduction versus vegetative growth and storage. J Am Soc Hortic Sci 123:1069–1075

    Google Scholar 

  • Stram DO, Lee JW (1994) Variance components testing in the longitudinal mixed effects model. Biometrics 50(4):1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Strik BC, Roper TR, DeMoranville CJ, Davenport JR, Poole AP (1991) Cultivar and growing region influence return bloom in cranberry uprights. HortScience 26:1366–1377

    Google Scholar 

  • Tadych M, Bergen MS, Johnson-Cicalese J, Polashock JJ, Vorsa N, White JF Jr (2012) Endophytic and pathogenic fungi of developing cranberry ovaries from flower to mature fruit: diversity and succession. Fungal Divers 54:101–116

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Van Ooijen JW (2009) MapQTL® 6, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Vorsa N, Johnson-Cicalese J (2012) American cranberry, chapter 6. In: Badenes ML, Byrne DH (eds) Fruit breeding. Handbook of plant breeding, vol 8, pp 191–223. Springer, New York

  • Vorsa N, Polashock J (2005) Alteration of anthocyanin glycosylation in cranberry through interspecific hybridization. J Am Soc Hortic Sci 130:711–715

    CAS  Google Scholar 

  • Wilcox J (1944) Some factors affecting apple yields in the Okanagan Valley: tree size, tree vigor, biennial bearing, and distance of planting. Sci Agric 25:189

    Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208. doi:10.3732/ajb.1100394

    Article  CAS  PubMed  Google Scholar 

  • Zalapa JE, Bougie TC, Bougie TA, Schlautman BJ, Wiesman E, Guzman A, Fajardo DA, Steffan S, Smith T (2014) Clonal diversity and genetic differentiation revealed by SSR markers in wild Vaccinium macrocarpon and Vaccinium oxycoccos. Ann Appl Biol 166:196–207. doi:10.1111/aab.12173

    Article  Google Scholar 

  • Zhu H, Senalik D, McCown BH, Zeldin EL, Speers J, Hyman J, Bassil N, Hummer K, Simon PW, Zalapa JE (2012) Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.). Theor Appl Genet 124:87–96. doi:10.1007/s00122-011-1689-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Galatians 6:9. This project was supported by USDA-SRCI under Grant 2008-51180-04878; USDA-NIFA-AFRI Competitive Grant USDA-NIFA-2013-67013-21107; USDA-ARS (project no. 3655-21220-001-00); WI-DATCP (SCBG Project #14-002); National Science Foundation (DBI-1228280); Ocean Spray Cranberries, Inc.; NJ Cranberry and Blueberry Research Council; Wisconsin Cranberry Growers Association; Cranberry Institute.

Author contribution

B.S., M.I., J.P., N.V., S.S., and J.Z. conceived the research and designed the experiments. J.J., J.P., and N.V. developed the full-sib population for linkage mapping and collected the phenotypic data for QTL analysis. B.S., L.R.B., T.B., T.B., and E.W. participated in genotyping the samples. B.S. and G.C.P. performed the statistical analyses of morphological traits. B.S., M.I., and L.D.G. performed the analyses of synteny. B.S. performed most of the experiment including linkage mapping and QTL analyses. B.S., N.V., and J.Z. oversaw the entire study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Zalapa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlautman, B., Covarrubias-Pazaran, G., Diaz-Garcia, L.A. et al. Development of a high-density cranberry SSR linkage map for comparative genetic analysis and trait detection. Mol Breeding 35, 177 (2015). https://doi.org/10.1007/s11032-015-0367-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0367-5

Keywords

Navigation