Skip to main content
Log in

Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The American cranberry (Vaccinium macrocarpon Ait.) is a major commercial fruit crop in North America, but limited genetic resources have been developed for the species. Furthermore, the paucity of codominant DNA markers has hampered the advance of genetic research in cranberry and the Ericaceae family in general. Therefore, we used Roche 454 sequencing technology to perform low-coverage whole genome shotgun sequencing of the cranberry cultivar ‘HyRed’. After de novo assembly, the obtained sequence covered 266.3 Mb of the estimated 540–590 Mb in cranberry genome. A total of 107,244 SSR loci were detected with an overall density across the genome of 403 SSR/Mb. The AG repeat was the most frequent motif in cranberry accounting for 35% of all SSRs and together with AAG and AAAT accounted for 46% of all loci discovered. To validate the SSR loci, we designed 96 primer-pairs using contig sequence data containing perfect SSR repeats, and studied the genetic diversity of 25 cranberry genotypes. We identified 48 polymorphic SSR loci with 2–15 alleles per locus for a total of 323 alleles in the 25 cranberry genotypes. Genetic clustering by principal coordinates and genetic structure analyzes confirmed the heterogeneous nature of cranberries. The parentage composition of several hybrid cultivars was evident from the structure analyzes. Whole genome shotgun 454 sequencing was a cost-effective and efficient way to identify numerous SSR repeats in the cranberry sequence for marker development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelkrim J, Robertson BC, Stanton JAL, Gemmell NJ (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185–192

    Article  PubMed  CAS  Google Scholar 

  • Allentoft ME, Schuster SC, Holdaway RN, Hale ML, McLay E, Oskam C, Gilbert MTP, Spencer P, Willerslev E, Bunce M (2009) Identification of microsatellites from an extinct moa species using high throughput (454) sequence data. Biotechniques 46:195–200

    Article  PubMed  CAS  Google Scholar 

  • Bassil N, Oda A, Hummer KE (2009) Blueberry microsatellite markers identify cranberry cultivars. Acta Hort 810:181–187

    CAS  Google Scholar 

  • Boches PS, Bassil NV, Rowland LJ (2005) Microsatellite markers for Vaccinium from EST and genomic libraries. Mol Ecol Notes 5:657–660

    Article  CAS  Google Scholar 

  • Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by TAQ DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20:1004–1010

    PubMed  CAS  Google Scholar 

  • Buschiazzo E, Gemmell NJ (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 28:1040–1050

    Article  PubMed  CAS  Google Scholar 

  • Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11:569–586

    Article  PubMed  Google Scholar 

  • Costich DE, Ortiz R, Meagher TR, Bruederle LP, Vorsa N (1993) Determination of ploidy level and nuclear DNA content in blueberry by flow cytometry. Theor Appl Genet 86:1001–1006

    Article  CAS  Google Scholar 

  • Csencsics D, Brodbeck S, Holderegger R (2010) Cost-effective, species-specific microsatellite development for the endangered dwarf bulrush (Typha minima) using next-generation sequencing technology. J Hered 101:789–793

    Article  PubMed  CAS  Google Scholar 

  • Dana MN (1983) Cranberry cultivar list. Frt Var J 37:88–95

    Google Scholar 

  • da Maia LC, Palmieri DA, de Souza VQ, Kopp MM, de Carvalho FI, de Oliveira AC (2008) SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genomics 41:2696

    Google Scholar 

  • Debnath SC (2007) An assessment of the genetic diversity within a collection of wild cranberry (Vaccinium macrocarpon Ait) clones with RAPD-PCR. Genet Resour Crop Ev 54:509–517

    Article  CAS  Google Scholar 

  • Eck P (1990) The American cranberry. Rutgers University Press, New Brunswick

    Google Scholar 

  • Kalt W (2002) Health functional phytochemicals of fruits. Hortic Rev 27:269–315

    Google Scholar 

  • Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 18:30–38

    Article  PubMed  CAS  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Open source MUMmer 30 is described in: versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  Google Scholar 

  • Lander ES, Waterman MS (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2:231–239

    Article  PubMed  CAS  Google Scholar 

  • McCown BH, Zeldin EL (2003) ‘HyRed’ and early, high fruit color cranberry hybrid. HortScience 38:304–305

    Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  • Novy RG, Vorsa N (1995) Identification of intracultivar genetic heterogeneity in cranberry using silver-stained RAPDs. HortScience 30:600–604

    CAS  Google Scholar 

  • Novy RG, Kobak C, Goffreda J, Vorsa N (1994) RAPDs identify varietal misclassification and regional divergence in cranberry (Vaccinium macrocarpon Ait.). Theor Appl Genet 88:1004–1010

    Article  CAS  Google Scholar 

  • Novy RG, Vorsa N, Patten K (1996) Identifying genotypic heterogeneity in McFarlin’ cranberry: a randomly-amplified polymorphic DNA (RAPD) and phenotypic analysis. J Am Soc Hort Sci 2:210–215

    Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Perry JC, Rowe L (2011) Rapid microsatellite development for water striders by next-generation sequencing. J Hered 102:125–129

    Article  PubMed  CAS  Google Scholar 

  • Polashock JJ, Vorsa N (2002) Development of SCAR markers for DNA fingerprinting and germplasm analysis of American cranberry. J Am Soc Hortic Sci 127:677–684

    CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rowland LJ, Dhanaraj AL, Polashock JJ, Arora R (2003) Utility of blueberry-derived EST-PCR primers in related Ericaceae species. HortScience 38:1428–1432

    CAS  Google Scholar 

  • Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006) Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genomics 7:222–234

    Article  PubMed  Google Scholar 

  • Saarinen EV, Austin JD (2010) When technology meets conservation: increased microsatellite marker production using 454 genome sequencing on the endangered Okaloosa darter (Etheostoma okaloosae). J Hered 101:784–788

    Article  PubMed  CAS  Google Scholar 

  • Santana QC, Coetzee MPA, Steenkamp ET, Mlonyeni OX, Hammond GNA, Wingfield MJ, Wingfield BD (2009) Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques 46:217–223

    Article  PubMed  CAS  Google Scholar 

  • Schnable P, Ware D, Fulton R, Stein J, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves T, Minx P, Reily A, Courtney L, Kruchowskz S, Tomlinson C et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Stewart CN, Excoffier L (1996) Assessing population genetic structure and variability with RAPD data: application to Vaccinium macrocarpon (American cranberry). J Evol Biol 9:153–171

    Article  CAS  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genom 272:603–615

    Article  CAS  Google Scholar 

  • Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean [Vigna radiata (L) Wilczek]. BMC Plant Biol 9:137–148

    Article  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  • Victoria FC, da Maia LC, de Oliveira AC (2011) In silico comparative analysis of SSR markers in plants. BMC Plant Biol 11:15

    Article  PubMed  Google Scholar 

  • Wang SY, Stretch AW (2001) Antioxidant capacity in cranberry is influenced by cultivar and storage temperature. J Agric Food Chem 49:969–974

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem DNA repeats. Theor Appl Genet 88:1–6

    CAS  Google Scholar 

  • Yu JW, Dixit A, Ma KH, Chung JW, Park YJ (2009) A study on relative abundance, composition and length variation of microsatellites in eighteen underutilized crop species. Genet Resour Crop Evol 56:237–246

    Article  CAS  Google Scholar 

  • Zalapa JE, Brunet J, Guries RP (2008) Isolation and characterization of microsatellite markers for red elm (Ulmus rubra Muhl) and cross-species amplification with Siberian elm (Ulmus pumila L). Mol Ecol Resour 8:109–112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank PS100, Eric Wiesman, Lisa Wasko, Beth Workmaster, Rebecca Harbut, Shawn Steffan, Jim Polashock, Nick Vorsa, and Rod Serres for their help with different aspects of this work. This research was supported by USDA-ARS (Project # 3655-21220-001-00) funding provided to J.E.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Zalapa.

Additional information

Communicated by A. Schulman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 411 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Senalik, D., McCown, B.H. et al. Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.). Theor Appl Genet 124, 87–96 (2012). https://doi.org/10.1007/s00122-011-1689-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1689-2

Keywords

Navigation