Skip to main content
Log in

Genetic diversity and evolutionary relationship analyses within and among Raphanus species using EST-SSR markers

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

We screened 626 pairs of EST-SSR primers from the radish marker database using 37 different cultivars. Of the primer pairs, 89.3 % (559) were polymorphic. The average polymorphism information content (PIC) value per primer was 0.39, ranging from 0.07 to 0.73. Fifty EST-SSR markers were designated core markers according to PCR band reproducibility and stability, high polymorphism levels, easily discriminated alleles, and an even distribution of molecular markers over each radish chromosome. Genetic diversity and the evolutionary relationships of 93 radish accessions, representing nearly all typical Raphanus germplasms, were assessed with 50 core EST-SSR markers. A total of 254 alleles at 52 loci (4.88 alleles per locus on average), with a mean PIC value of 0.55, were detected. The wild radish had the largest range of variation, followed by the East Asian big long radish and the European small radish. Unweighted pair group method with arithmetic mean cluster analysis classified the 93 germplasms into four groups. The first group included most accessions belonging to R. sativus, while seven wild Raphanus strains were separated into the remaining groups. In the R. sativus group, the subspecies var. hortensis Becker, var. raphanistroides Makino, var. caudatus Hooker and Anderson, var. sativus L., var. niger Kerner, and var. oleiferus Metzg were sorted into separate subgroups. Population genetics structure analyses show that the accessions were attributed to three populations: (1) Asia cultivated and East Asian wild, (2) Europe cultivated, and (3) wild Raphanus species. Herein, we discuss the origin and ancestry of cultivated radishes based on these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aoba T (1993) Vegetables in Japan. Yasaka Shobo, Tokyo, p 311 (in Japanese)

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Budahn H, Peterka H, Mousa MA, Ding Y, Zhang S, Li J (2009) Molecular mapping in oil radish (Raphanus sativus L.) and QTL analysis of resistance against beet cyst nematode (Heterodera schachtii). Theor Appl Genet 118:775–782

    Article  PubMed  Google Scholar 

  • Cheng DD, Zhang FJ, Liu LW, Xu L, Chen YL, Wang XL, Limera C, Yu RG, Gong YQ (2013) TRAP markers generated with resistant gene analog sequences and their application to genetic diversity analysis of radish germplasm. Sci Hortic 161:153–159

    Article  CAS  Google Scholar 

  • Cui N, Qiu Y, Li XX, Shen D, Wang HP, Song JP (2012) Data mining for SSRs in EST rescources and EST-SSR markers development in radish. Acta Hortic Sin 39(7):1303–1312 (in Chinese)

    CAS  Google Scholar 

  • Curtis IS (2011) Genetic engineering of radish: current achievements and future goals. Plant Cell Rep 30:733–744

    Article  CAS  PubMed  Google Scholar 

  • De Candolle A (1886) Origin of cultivated plants, 2nd edn (reprinted in 1959 by Hafner, New York, pp 29–33)

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Ellstrand NC, Marshall DL (1985) Interpopulation gene flow by pollen in wild radish, Raphanus sativus. Am Nat 126:606–616

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grzebelus D, Iorizzo M, Senalik D, Ellison S, Cavagnaro P, Macko-Podgorni A, Heller-Uszynska K, Kilian A, Nothnagel T, Allender C, Simon PW, Baranski R (2014) Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by diversity arrays technology (DArT) markers. Mol Breed 33:625–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henslow G (1898) The history of the radish. Gard Chron 23:389

    Google Scholar 

  • Huh MK, Huh HW (2001) Genetic diversity of Raphanus sativus var. hortensis f. raphanistroides in Korea using AFLP markers. Kor J Genet 23:45–53

    CAS  Google Scholar 

  • Huh MK, Ohnishi O (2002) Genetic diversity and genetic relationships of East Asian natural populations of wild radish revealed by AFLP. Breed Sci 52:79–88

    Article  CAS  Google Scholar 

  • Huh MK, Ohnishi O (2003) Genetic diversity and relationships among natural and cultivated populations of radish in Korea revealed by RAPD. Kor J Genet 25:119–125

    CAS  Google Scholar 

  • Jiang L, Wang L, Liu L, Zhu X, Zhai L, Gong Y (2012) Development and characterization of cDNA library based novel EST-SSR marker in radish (Raphanussativus L.). Sci Hortic 140:164–172

    Article  CAS  Google Scholar 

  • Kaneko Y, Kimizuka-Takagi C, Bang SW, Matsuzawa Y (2007) Radish. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5. Vegetables. Springer, Berlin, pp 141–160

    Google Scholar 

  • Kitamura S (1958) Varieties of radish and their transition. In: Nishiyama I (ed) Japanese radish. The Japan Science Society Press, Tokyo, pp 1–19

    Google Scholar 

  • Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A, Yokoi S, Takahata Y, Kakizaki T, Ishida M, Okamoto S, Sakamoto K, Shirasawa K, Tabata S, Nishio T (2014) Draft sequences of the radish (Raphanus sativus L.). Genome DNA Res 21(5):481–490

  • Kobabe G (1959) Naturliche Einkreuzung von Hederich (Raphanus raphanistrum L.) in Radies (Raphanus sativus var. radicula DC.) und das Verhalten von Knollenform und Farbe in den nachfolgenden F-und R-Generationen. Zeitschrift fur Pflanzenzuchtung 42:1–10

    Google Scholar 

  • Kong Q, Li X, Xiang C, Wang H, Song J, Zhi H (2011) Genetic diversity of radish (Raphanus sativus L.) germplasm resources revealed by AFLP and RAPD markers. Plant Mol Biol Rep 29:217–223

    Article  Google Scholar 

  • Kumazawa S (1961) Horticulture, detailed discussion of crops. Yokendo, Tokyo, p 637 (in Japanese)

    Google Scholar 

  • Lewis-Jones LJ, Thorpe JP, Wallis GP (1982) Genetic divergence in four species of the genus Raphanus: implications for the ancestry of the domestic radish R. sativus. Biol J Linn Soc 18:35–48

    Article  Google Scholar 

  • Li S (1989) The origin and resources of vegetable crops in China. International symposium on horticultural germplasm, cultivated and wild, Beijing, China, September 1988.  Chinese Society for Horticultural Science, International Academic Publishers, Beijing, pp 197–202

  • Li XX, Shen D et al (2008) Descriptors and data standards for radish (Raphanus sativus L.). China Agriculture Press, Beijing (in Chinese)

    Google Scholar 

  • Li F, Hasegawa Y, Saito M, Shirasawa S, Fukushima A, Ito T, Fujii H, Kishitani S, Kitashiba H, Nishio T (2011) Extensive chromosome homoeology among Brassiceae species were revealed by comparative genetic mapping with high density EST-based SNP markers in radish (Raphanus sativus L.). DNA Res 18:401–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas (Beijing) 25(3):317–321

    Google Scholar 

  • Liu LW, Zhao LP, Gong YQ, Wang MX, Chen LM, Yang JL, Wang Y, Yu FM, Wang LZ (2008) DNA fingerprinting and genetic diversity analysis of late-bolting radish cultivars with RAPD, ISSR and SRAP markers. Sci Hortic 116:240–247

    Article  CAS  Google Scholar 

  • Lü N, Yamane K, Ohnishi O (2008) Genetic diversity of cultivated and wild radish and phylogenetic relationships among Raphanus and Brassica species revealed by the analysis of trnK/matK sequence. Breed Sci 58:15–22

    Article  Google Scholar 

  • Madhou P, Wells A, Pang ECK, Stevenson TW (2005) Genetic variation in populations of Western Australian wild radish. Aust J Agric Res 56:1079–1087

    Article  CAS  Google Scholar 

  • Makino T (1961) Makino’s new illustrated flora of Japan. Hokuryukan, Tokyo (in Japanese)

    Google Scholar 

  • Matveeva TV, Simonova AV, Lutova LA (2002) Molecular markers of inbred radish (Raphanus sativus var. radicola Pers) lines. Cell Mol Biol Lett 7:845–848

    CAS  PubMed  Google Scholar 

  • Muminović J, Merz A, Melchinger AE (2005) Genetic structure and diversity among radish varieties as inferred from AFLP and ISSR analyses. J Am Soc Hortic Sci 130(1):79–87

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muuoz MC, Bermejo JEH (1978) La corola en la tribu Brassiceae. Anal del Insti Bot Cava 35:297–334

    Google Scholar 

  • Nakatsuji R, Hashida T, Matsumoto N, Tsuro M, Kubo N, Hirai M (2011) Development of genomic and EST-SSR markers in radish (Raphanus sativus L.). Breed Sci 61:413–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohsako T, Hirai M, Yamabuki M (2010) Spatial structure of microsatellite variability within and among populations of wild radish Raphanus sativus L. var. hortensis Backer f. raphanistroides Makino (Brassicaceae) in Japan. Breed Sci 60:195–202

    Article  CAS  Google Scholar 

  • Qi JJ, Liu X, Shen D, Miao H, Xie BY, Li XX et al (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 12(45):1510–1518

    Article  Google Scholar 

  • Rohlf FJ (2008) NTSYSpc: numerical taxonomy system, ver. 2.20. Exeter, Setauket

    Google Scholar 

  • Shen D, Sun H, Huang M, Zheng Y, Li X, Fei Z (2013a) RadishBase: a database for genomics and genetics of radish. Plant Cell Physiol 54:e3

    Article  CAS  PubMed  Google Scholar 

  • Shen D, Sun H, Huang M, Zheng Y, Qiu Y, Li X, Fei Z (2013b) Comprehensive analysis of expressed sequence tags from cultivated and wild radish (Raphanus spp.). BMC Genomics 14:721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shirasawa K, Oyama M, Hirakawa H, Sato S, Tabata S, Fujioka T, Kimizuka-Takagi C, Sasamoto S, Watanabe A, Kato M et al (2011) An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae. DNA Res 18:221–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsuro M, Suwabe K, Kubo N, Matsumoto S, Hirai M (2008) Mapping of QTLs controlling root shape and red pigmentation in radish, Raphanus sativus L. Breed Sci 58:55–61

    Article  CAS  Google Scholar 

  • Wang N, Kitamoto N, Ohsawa R, Fujimure T (2008) Genetic diversity of radish (Raphanus sativus) germplasms and relationships among worldwide accessions analyzed with AFLP markers. Breed Sci 58:107–112

    Article  CAS  Google Scholar 

  • Wang LX, Chang LF, Li HB, Ji W, Liu LH, Zhao CP (2010) Molecular markers for estimating distinctness, uniformity, and stability of wheat lines in regional trials. Acta Agron Sin 36(7):1114–1125 (in Chinese)

    Article  CAS  Google Scholar 

  • Wang QB, Zhang YY, Fang ZY, Liu YM, Yang LM, Zhuang M (2012) Chloroplast and mitochondrial SSR help to distinguish allo-cytoplasmic male sterile types in cabbage (Brassica oleracea L. var. capitata). Mol Breed 30:709–716

    Article  Google Scholar 

  • Xu L, Wang L, Gong Y, Dai W, Wang Y, Zhu X, Wen T, Liu L (2012) Genetic linkage map construction and QTL mapping of cadmium accumulation in radish (Raphanus sativus L.). Theor Appl Genet 125:659–670

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi H (2004) Assessment of cytoplasmic polymorphisms by PCR-RFLP of the mitochondrial orfB region in wild and cultivated radishes (Raphanus). Plant Breed 123:141–144

    Article  CAS  Google Scholar 

  • Yamagishi H, Terachi T (2003) Multiple origins of cultivated radishes as evidenced by a comparison of the structural variations in mitochondrial DNA of Raphanus. Genome 46:89–94

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi H, Tateishi M, Terachi T, Murayama S (1998) Genetic relationships among Japanese wild radishes (Raphanus sativus f. raphanistroides Makino), cultivated radishes and R. raphanistrum revealed by RAPD analysis. J Jpn Soc Hortic Sci 67:526–531

    Article  CAS  Google Scholar 

  • Yamane K, Lü N, Ohnishi O (2005) Chloroplast DNA variations of cultivated radish and its wild relatives. Plant Sci 168:627–634

    Article  CAS  Google Scholar 

  • Yamane K, Lü N, Ohnishi O (2009) Multiple origins and high genetic diversity of cultivated radish inferred from polymorphism in chloroplast simple sequence repeats. Breed Sci 59:55–65

    Article  CAS  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

This work was funded by grants from National Key Technology R&D Program of China (2012BAD02B01, 2012BAD50G00) and the Technological Innovation Capacity Program of Beijing Academy of Agricultural and Forestry Sciences (KJCX20140111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 45 kb)

11032_2015_261_MOESM2_ESM.jpg

Supplement Figure S1 Amplified bands of primer RSS2474 in 37 radish accessions and their patterns and codes for each allele. There were seven alleles at locus a, meanwhile, could not be detected polymorphism at locus b in this study (JPEG 187 kb)

Supplementary material 3 (PDF 79 kb)

Supplementary material 4 (PDF 140 kb)

Supplement Figure S4 Line chart of K values changing with Evanno’s Delta K (JPEG 12 kb)

11032_2015_261_MOESM6_ESM.jpg

Supplement Figure S5 Compare UPGMA cluster dendrogram in this study with Neighbor-joining tree of radish in Shen et al. (JPEG 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, L. & Zheng, P. Genetic diversity and evolutionary relationship analyses within and among Raphanus species using EST-SSR markers. Mol Breeding 35, 62 (2015). https://doi.org/10.1007/s11032-015-0261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0261-1

Keywords

Navigation