Skip to main content
Log in

Genetic engineering of radish: current achievements and future goals

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

An Erratum to this article was published on 25 May 2011

Abstract

Radish is a major root crop grown in the Far East and is especially important to some low-income countries where it is consumed on a daily basis. Developments in gene technology systems have helped to accelerate the production of useful germplasms, but progress has been slow, though achieved, via in planta methods and useful traits have been introduced. In the wake of the new Millennium, future goals in terms of improving transformation efficiency and selection of new traits for generating late-flowering radish are described. Furthermore, the techniques available for incorporating pharmaceutical proteins into radish to deliver edible proteins on-site are discussed. Finally, the concerns of releasing transgenic radish to the field in terms of pollen-mediated gene transfer are also reviewed. Such a report identifies key areas of research that is required to allow the crop satisfy the need of poor impoverished countries in the Far East.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Babu RC, Zhang J, Blum A, Ho DT-H, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  • Ballester A, Cervera M, Pena L (2008) Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Rep 27:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In plant Agrobacterium-mediated transformation gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sci 316:1194–1199

    CAS  Google Scholar 

  • Becker C (1962) Rettish und radies (Raphanus sativus). Handbuch der Pflanzenzuchtung 6:23–78

    Google Scholar 

  • Bhatnagar M, Prasad K, Bhatnagar-Mathur P, Narasu ML, Waliyar F, Sharma KK (2010) An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.). Plant Cell Rep 29:495–502

    Article  PubMed  CAS  Google Scholar 

  • Burnett L, Arnoldo M, Yarrow S, Huang B (1994) Enhancement of shoot regeneration from cotyledon explants of Brassica rapa ssp. oleifera through pretreatment with auxin and cytokinin and use of ethylene inhibitors. Plant Cell Tissue Organ Cult 37:253–256

    CAS  Google Scholar 

  • Chang SS, Park SK, Kim BC, Kang BJ, Kim DU, Nam HG (1994) Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. Plant J 5:551–558

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Crisp P (1995) Radish. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Scientific & Technical, London, pp 86–89

    Google Scholar 

  • Curtis IS (2004) Genetic transformation of radish (Raphanus sativus L.) by floral-dipping. In: Curtis IS (ed) Transgenic crops of the world-essential protocols. Kluwer Academic Publishers, Dordrecht, pp 271–280

    Google Scholar 

  • Curtis IS (2008) Radish. In: Kole C and Hall TC (eds) Compendium of transgenic crop plants: transgenic vegetable crops, vol 6, chap 5. Wiley, Chichester, pp 117–134

  • Curtis IS, Nam HG (2001) Transgenic radish (Raphanus sativus L. var. longipinnatus Bailey) by floral-dip method–plant development and surfactant are important in optimizing transformation efficiency. Trans Res 10:363–371

    Article  CAS  Google Scholar 

  • Curtis IS, Nam HG, Yun JY, Seo K-H (2002) Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering. Trans Res 11:249–256

    Article  CAS  Google Scholar 

  • Curtis IS, Nam HG, Sakamoto K (2004) Optimized shoot regeneration system for the commercial Korean radish ‘Jin Ju Dae Pyong’. Plant Cell Tissue Organ Cult 77:81–87

    Article  CAS  Google Scholar 

  • Curtis IS, Hanada A, Yamaguchi S, Kamiya Y (2005) Modification of plant architecture through the expression of GA 2-oxidase under the control of an estrogen inducible promoter in Arabidopsis thaliana L. Planta 222:957–967

    Article  PubMed  CAS  Google Scholar 

  • Dai XG, Shi XP, Ye YM, Fu Q, Bao MZ (2009) High frequency plant regeneration from cotyledon and hypocotyl explants of ornamental kale. Biol Plant 53:769–773

    Article  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562

    Article  PubMed  CAS  Google Scholar 

  • Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 1:1071–1079

    Article  PubMed  CAS  Google Scholar 

  • Darmency H (1994) The impact of hybrids between genetically modified crop plants and their related species: introgression and weediness. Mol Ecol 3:37–40

    Article  Google Scholar 

  • De Cosa B, Moar W, Lee S-B, Miller M, Daniell H (2001) Overexpression of Bt Cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  PubMed  Google Scholar 

  • de Vetten N, Wolters A-M, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895–904

    Article  PubMed  CAS  Google Scholar 

  • Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol 24:426–432

    Article  PubMed  CAS  Google Scholar 

  • Engelen-Eigles G, Erwin JE (1997) A model plant for vernalization studies. Sci Hortic 70:197–202

    Article  Google Scholar 

  • Feldmann KA, Marks MD (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208:1–9

    Article  CAS  Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    Article  PubMed  CAS  Google Scholar 

  • Guéritaine G, Darmency H (2001) Polymorphism for interspecific hybridization between oilseed rape (Brassica napus) and a population of wild radish (Raphanus raphanistrum). Sex Plant Reprod 14:169–172

    Article  Google Scholar 

  • Guéritaine G, Bonavent JF, Darmency F (2003) Variation of prezygotic barriers in the interspecific hybridization between oilseed rape and wild radish. Euphytica 130:349–353

    Article  Google Scholar 

  • Hou B-K, Zhou Y-H, Wan L-H, Zhang Z-L, Shen G-F, Chen Z-H, Hu Z-M (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111–114

    Article  PubMed  CAS  Google Scholar 

  • Huh MK, Ohnishi O (2002) Genetic diversity and genetic relationships of East Asian natural populations of wild radish revealed by AFLP. Breed Sci 52:79–88

    Article  CAS  Google Scholar 

  • Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci USA 97:9789–9794

    Article  PubMed  CAS  Google Scholar 

  • Jeong WJ, Min SR, Liu JR (1995) Somatic embryogenesis and plant regeneration in tissue cultures of radish (Raphanus sativus L.). Plant Cell Rep 14:648–651

    Article  CAS  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  PubMed  CAS  Google Scholar 

  • Katavic V, Haughn GW, Reed D, Martin M, Kunst L (1994) In planta transformation of Arabidopsis thaliana. Mol Gen Genet 245:363–370

    Article  PubMed  CAS  Google Scholar 

  • Kaymak HÇ, Güvenç I (2010) The influence of vernalization time and day length on flower induction of radish (Raphanus sativus L.) under controlled and field conditions. Turk J Agric For 34:401–413

    Google Scholar 

  • Kerlan M, Chevre A, Eber F, Baranger A, Renard M (1992) Risk assessment of outcrossing of transgenic rapeseed to related species. I. Interspecific hybrid production under optimal conditions with emphasis on pollination and fertilization. Euphytica 62:145–153

    Article  Google Scholar 

  • Kilby NJ, Davies GJ, Michael RS, Murray JAH (1995) FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. Plant J 8:637–652

    Article  PubMed  CAS  Google Scholar 

  • Kong Q, Li X, Xiang C, Wang H, Song J, Zhi H (2010) Genetic diversity of radish (Raphanus sativus L.) germplasm resources revealed by AFLP and RAPD markers. Plant Mol Biol Rep. doi:10.1007/s11105-010-0228-7

  • Koornneef M, van Eden J, Hanhart CJ, Stam P, Braaksma FJ, Feenstra WJ (1983) Linkage map of Arabidopsis thaliana. J Hered 74:265–272

    Google Scholar 

  • Koornneef M, Hanhart CJ, Van Der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    Article  PubMed  CAS  Google Scholar 

  • Kraus (2010) Concepts of marker genes for plants. In: Kempken F, Jungs C (eds) Genetic modification of plants, Biotechnology in agriculture and forestry, vol 64. Springer, Heidelberg, pp 39–60

  • Kumar S, Allen GC, Thompson WF (2006) Gene targeting in plants: fingers on the move. Trends Plant Sci 11:159–161

    Article  PubMed  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  PubMed  CAS  Google Scholar 

  • Lee S-S (1987) Bolting in radish. In: Asian and Pacific Council (eds) Improved vegetable production in Asia. Food & Fertilizer Technology Center, Taipei, Series No. 36, pp 60–70

  • Lee M, Phillips RL (1988) The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol Plant Mol Biol 39:413–437

    Article  Google Scholar 

  • Leroux B, Carmoy N, Giraudet D, Potin P, Larher F, Bodin M (2009) Inhibition of ethylene biosynthesis enhances embryogenesis of cultured microspores of Brassica napus. Plant Biotechnol Rep 3:347–353

    Article  Google Scholar 

  • Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297:243–246

    Article  PubMed  CAS  Google Scholar 

  • Li B, Xie C, Qiu H (2009) Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimerism or escape, transgene inheritance, and efficiency. Plant Cell Rep 28:373–386

    Article  PubMed  CAS  Google Scholar 

  • Lichter R (1989) Efficient yield of embryoids by culture of isolated microspores of different Brassiaceae species. Plant Breed 103:119–123

    Article  Google Scholar 

  • Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377

    Article  PubMed  CAS  Google Scholar 

  • Liu LW, Zhao LP, Gong YQ, Wang MX, Chen LM, Yang JL, Wang Y, Yu FM, Wang LZ (2008) DNA fingerprinting and genetic diversity analysis of late-bolting radish cultivars with RAPD, ISSR and SRAP markers. Sci Hortic 116:240–247

    Article  CAS  Google Scholar 

  • Lu N, Yamane K, Ohnishi O (2008) Genetic diversity of cultivated and wild radish and phylogenetic relationships among Raphanus and Brassica species revealed by the analysis of trnK/matK sequence. Breed Sci 58:15–22

    Article  CAS  Google Scholar 

  • Lucca P, Ye X, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed 7:43–49

    Article  CAS  Google Scholar 

  • Madou P, Wells A, Pang ECK, Stevenson TW (2005) Genetic variation in populations of Western Australian wild radish. Aust J Agric Res 56:1079–1087

    Article  Google Scholar 

  • Malnoy M, Borejsza-Wysocka EE, Abbott P, Lewis S, Norelli JL, Flaishman M, Gidoni D, Aldwinckle HS (2007) Genetic transformation of apple without use of a selectable marker. Acta Hortic 738:319–322

    Google Scholar 

  • Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101:6852–6857

    Article  PubMed  CAS  Google Scholar 

  • Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23:718–723

    Article  PubMed  CAS  Google Scholar 

  • Matsubura S, Hegazi HH (1990) Plant regeneration from hypocotyl callus of radish. Hortic Sci 25:1286–1288

    Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:445–458

    Article  Google Scholar 

  • Muminovic J, Merz A, Melchinger AE, Lubberstedt T (2005) Genetic structure and diversity among radish varieties as inferred from AFLP and ISSR analyses. J Am Soc Hortic Sci 130:79–87

    CAS  Google Scholar 

  • Nadkarni KM (1927) Dr. K. M. Nadkarni’s Indian Material Medica. Popular Prakashan, Bombay

    Google Scholar 

  • Nakamura Y, Iwahashi T, Tanaka A, Koutani J, Matsuo T, Okamoto S, Sato K, Ohtsuki K (2001) 4-(Methylthio)-3-butenyl isothiocyanate, a principal antimutagen in daikon (Raphanus sativus; Japanese white radish). J Agric Food Chem 49:5755–5760

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TT, Nugent G, Cardi T, Dix PJ (2005) Generation of homoplasmic plastid transformants of a commercial cultivar of potato (Solanum tuberosum L.). Plant Sci 168:1495–1500

    Article  CAS  Google Scholar 

  • Ogura H (1968) Studies on the new male sterility in Japanese radish with special reference to utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agric Kagoshima Univ 6:39–78

    Google Scholar 

  • Park DH, Somers DE, Kim YH, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    Article  PubMed  CAS  Google Scholar 

  • Park B-J, Liu Z, Kanno A, Kameya T (2005) Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harbouring a group 3 LEA gene from B. napus. Plant Cell Rep 24:494–500

    Article  PubMed  CAS  Google Scholar 

  • Pua E-C, Lee JEE (1995) Enhanced de novo shoot morphogenesis in vitro by expression of antisense 1-aminocyclopropane-1-carboxylate oxidase gene in transgenic mustard plants. Planta 196:69–76

    Article  CAS  Google Scholar 

  • Pua E-C, Sim G-E, Chi G-L, Kong L-F (1996) Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyls explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey) in vitro. Plant Cell Rep 15:685–690

    Article  CAS  Google Scholar 

  • Qing CM, Fan L, Lei Y, Bouchez D, Tourneur C, Yan L, Robaglia C (2000) Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol Breed 6:67–72

    Article  CAS  Google Scholar 

  • Quisumbing E (1951) Medicinal plants of the Philippines. In: Technical bulletin no. 16. Republic of the Philippines Department of Agriculture and Natural Resources, Manilla Bureau of Printing

  • Redei GP (1962) Supervital mutants of Arabidopsis. Genet 47:443–460

    CAS  Google Scholar 

  • Richardson K, Fowler S, Pullen C, Skelton C, Morris B, Putterill J (1998) T-DNA tagging of a flowering-time gene and improved gene transfer by in planta transformation of Arabidopsis. Aust J Plant Physiol 25:125–130

    Article  CAS  Google Scholar 

  • Ridley CE, Ellstrand NC (2009) Evolution of enhanced reproduction in the hybrid-derived invasive, California wild radish (Raphanus sativus). Biol Invasions 11:2251–2264

    Article  Google Scholar 

  • Rieger MA, Potter TD, Preston C, Powles SB (2001) Hybridisation between Brassica napus L. and Raphanus raphanistrum L. under agronomic field conditions. Theor Appl Genet 103:555–560

    Article  CAS  Google Scholar 

  • Roggen HPJR, Van Dijk AJ (1973) Electric aided and bud pollination. Euphytica 22:260–263

    Article  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  PubMed  CAS  Google Scholar 

  • Sikdar S, Seriono G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–25

    Article  CAS  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta Stone of flowering time? Science 296:285–289

    Article  PubMed  CAS  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho THD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    Article  PubMed  CAS  Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115–122

    Article  PubMed  CAS  Google Scholar 

  • Sparrow PA, Irwin JA, Dale PJ, Twyman RM, Ma JK (2007) Pharma-planta: road testing the developing regulatory guidelines for plant-made pharmaceuticals. Transgenic Res 16:147–161

    Article  PubMed  CAS  Google Scholar 

  • Staub JM, Maliga (1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4:39–45

    Article  PubMed  CAS  Google Scholar 

  • Steinitz B, Barr N, Tabib Y, Vaknin Y, Bernstein N (2010) Control of in vitro rooting and plant development in Corymbia maculata by silver nitrate, silver thiosulfate and thiosulfate ion. Plant Cell Rep 29:1315–1323

    Article  PubMed  CAS  Google Scholar 

  • Sugita K, Kasahara T, Matsunaga E, Ebinuma H (2000) A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J 22:461–469

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Swire-Clark GA, Marcotte WR Jr (1999) The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol Biol 39:117–128

    Article  PubMed  CAS  Google Scholar 

  • Takahata Y, Komatsu H, Kaizuma N (1996) Microspore culture of radish (Raphanus sativus L.): influence of genotype and culture conditions on embryogenesis. Plant Cell Rep 16:163–166

    CAS  Google Scholar 

  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou T-J, Katagi H, Dewbre GR, Weigel D, Harrison M (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541

    Article  PubMed  CAS  Google Scholar 

  • Wang K (2006) Methods in Molecular Biology, vol 343: Agrobacterium protocols, 2nd edn, vol 1. Humana Press Inc, Totowa

  • Wang L, Wei L, Wang L, Xu C (2002) Effects of peroxidase on hyperlipidemia in mice. J Agric Food Chem 50:868–870

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi H (2004) Assessment of cytoplasmic polymorphisms by PCR-RFLP of the mitochondrial orfB region in wild and cultivated radishes (Raphanus). Plant Breed 123:141–144

    Article  CAS  Google Scholar 

  • Yamagishi H, Tateishi M, Terachi T, Murayama S (1998) Genetic relationships among Japanese wild radishes (Raphanus sativus f. raphanistroides Makino), cultivated radishes and R. raphanistrum revealed by RAPD analysis. J Jpn Soc Hortic Sci 67:526–531

    Article  CAS  Google Scholar 

  • Yamane K, Lu N, Ohnishi O (2005) Chloroplast DNA variations of cultivated radish and its wild relatives. Plant Sci 168:627–634

    Article  CAS  Google Scholar 

  • Yan Z, Liang D, Liu H, Zheng G (2010) FLC: a key regulator of flowering time in Arabidopsis. Russ J Plant Physiol 57:166–174

    Article  CAS  Google Scholar 

  • Ye GN, Stone G, Pang SZ, Creely W, Gonzalez K, Hinchee M (1999) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J 19:249–257

    Article  PubMed  Google Scholar 

  • Zuo J, Niu Q-W, Chua N-H (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian S. Curtis.

Additional information

Communicated by R. Reski.

This work is dedicated to my loving mother Brenda Curtis (1931–2008), my number one fan. Rest in peace.

A contribution to the Special Issue: Plant Biotechnology in Support of the Millennium Development Goals.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00299-011-1090-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtis, I.S. Genetic engineering of radish: current achievements and future goals. Plant Cell Rep 30, 733–744 (2011). https://doi.org/10.1007/s00299-010-0978-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0978-6

Keywords

Navigation