Skip to main content
Log in

Co-combustion behaviors of municipal solid waste and low-rank coal semi-coke in air or oxygen/carbon dioxide atmospheres

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Co-combustion characteristics and interactions of municipal solid waste (MSW) and low-rank coal semi-coke (LCSC) in O2/CO2 or air atmosphere are investigated by the thermogravimetric method, including analyses of thermodynamic, kinetic parameters and reaction mechanism function. Results indicated that addition of MSW and higher oxygen concentration improve the co-combustion performance of blends. There are three distinct peaks for co-combustion of blends in air atmosphere, while only two peaks in 30O2/70CO2 atmosphere. It indicates that the presence of CO2 in oxy-fuel atmosphere is conducive to semi-char burnout. Interactions of MSW and LCSC mainly occur between 260 °C and 650 °C, and the synergetic interaction is very obvious around the second peak region of combustion process. The average activation energies Ea show an upward trend with the increase in oxygen concentration, and the minimum value of Ea is obtained when the blend ratio of MSW is 50% which might be an optimal option for co-combustion of blends. Activation energy, enthalpy changes, Gibbs function and entropy changes for 50MSW50LCSC in 30O2/70CO2 atmosphere are 140.86 kJ mol−1, 138.33 kJ mol−1, 161.94 kJ mol−1 and − 41.44 J mol−1 K−1, respectively. In O2/CO2 atmospheres, F6 and F1 functions are more suitable to describe the starting and subsequent process of entail reaction. The results can provide a theoretical and practical guidance for the harmless disposal and resource utilization of MSW and LCSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Pe-exponential factor (min−1)

A d :

Ash content of dry basis (−)

C d :

Carbon content of dry basis (−)

E :

Activation energy (kJ mol−1)

E a :

Average activation energy (kJ mol−1)

FCd :

Fixed carbon content of dry basis (-)

h :

Planck’s constant (J s−1)

H :

Enthalpy (kJ mol−1)

H d :

Hydrogen content of dry basis (−)

G :

Gibbs function (kJ mol−1)

k B :

Boltzmann constant (J K−1)

m 0 :

Intimal mass of sample (mg)

m t :

Mass of sample at any time (mg)

m :

Final mass of sample (mg)

M ar :

Moisture content of as-received basis (−)

N d :

Nitrogen content of dry basis (−)

O d :

Oxygen content of dry basis (−)

t :

Reaction time (min)

T :

Reaction temperature (K/°C)

T i :

Ignition temperature (°C)

T f :

Burnout temperature (°C)

T max :

Temperature corresponding to maximum mass loss rate (°C)

R :

Universal gas constant (J mol−1 K−1)

r max :

Maximum mass loss rate (% min−1)

r mean :

Mean mass loss rate (% min−1)

R w :

Combustion stability index (% min−1 °C−2)

S :

Entropy (J mol−1 K−1)

S d :

Sulfur content of dry basis (−)

V d :

Volatile content of dry basis (−)

α :

Conversion rate (−)

β :

Heating rate (°C min−1)

a:

Average

pr:

Products

re:

Reactants

ANN:

Artificial neural networks

CCI:

Comprehensive combustion index

DAEM:

Distributed activation energy model

FWO:

Flynn–Wall–Ozawa

LCSC:

Low-rank coal semi-coke

MSW:

Municipal solid waste

TGA:

Thermogravimetric analysis

References

  1. National Bureau of Statistics of China. China statistical yearbook. Beijing: China Statistics Press; 2016 (in Chinese).

    Google Scholar 

  2. Fan JM, Hong H, Zhang L, Li LL, Jin HG. Thermodynamic performance of SNG and power coproduction from MSW with recovery of chemical unreacted gas. Waste Manage. 2017;67:163–70.

    Article  CAS  Google Scholar 

  3. Cheng H, Hu Y. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresour Technol. 2010;101:3816–24.

    Article  CAS  PubMed  Google Scholar 

  4. Khatami R, Levendis YA. An overview of coal rank influence on ignition and combustion phenomena at the particle level. Combust Flame. 2016;164:22–34.

    Article  CAS  Google Scholar 

  5. Song HJ, Liu GR, Zhang JZ, Wu JH. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method. Fuel Process Technol. 2017;156:454–60.

    Article  CAS  Google Scholar 

  6. Zhang K, Li Y, Wang ZH, Li Q, Whiddon R, He Y, Cen KF. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures. Fuel. 2016;185:701–8.

    Article  CAS  Google Scholar 

  7. Muthuraman M, Namioka T, Yoshikawa K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: a thermogravimetric analysis. Appl Energy. 2010;87:141–8.

    Article  CAS  Google Scholar 

  8. Hu SC, Ma XQ, Lin YS, Yu ZS, Fang SW. Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste. Energy Convers Manage. 2015;99:112–8.

    Article  Google Scholar 

  9. Fan YL, Yu ZS, Fang SW, Lin Y, Lin YS, Liao YF, Ma XQ. Investigation on the co-combustion of oil shale and municipal solid waste by using thermogravimetric analysis. Energy Convers Manage. 2016;117:367–74.

    Article  CAS  Google Scholar 

  10. Ding GC, He BS, Cao Y, Wang CJ, Su LB, Duan ZP, Song JG, Tong WX, Li XZ. Process simulation and optimization of municipal solid waste fired power plant with oxygen/carbon dioxide combustion for near zero carbon dioxide emission. Energy Convers Manage. 2018;157:157–68.

    Article  CAS  Google Scholar 

  11. Pei XH, He BS, Yan LB, Wang CJ, Song WN, Song JG. Process simulation of oxy-fuel combustion for a 300 MW pulverized coal-fired power plant using Aspen Plus. Energy Convers Manage. 2013;76:581–7.

    Article  CAS  Google Scholar 

  12. Toftegaard MB, Brix J, Jensen PA, Glarborg P, Jensen AD. Oxy-fuel combustion of solid fuels. Prog Energy Combust. 2010;36:581–625.

    Article  CAS  Google Scholar 

  13. Tang YT, Ma XQ, Lai ZY. Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres. Bioresour Technol. 2011;102:1879–85.

    Article  CAS  PubMed  Google Scholar 

  14. Xing XJ, Li YL, Xing YQ, Xu BJ, Fan FY, Zhang XF, Xing JS. Co-combustion characteristics and kinetic analyses of biomass briquette and municipal solid waste in N2/O2 and CO2/O2 Atmospheres. BioResources. 2017;12:1317–34.

    Article  CAS  Google Scholar 

  15. Li YL, Xing XJ, Xu BJ, Xing YQ, Zhang XF, Yang J, Xing JS. Effect of the particle size on co-combustion of municipal solid waste and biomass briquette under N2/O2 and CO2/O2 atmospheres. Energy Fuel. 2017;31:932–40.

    Article  CAS  Google Scholar 

  16. Chen JC, Xie CD, Liu JY, He Y, Xie WM, Zhang XC, Chang KL, Kuo JH, Sun J, Li Z, Sun SY, Buyukada M, Evrendilek F. Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: thermodynamic characteristics, kinetics and artificial neural network modeling. Bioresour Technol. 2018;250:230–8.

    Article  CAS  PubMed  Google Scholar 

  17. Xie CD, Liu XC, Zhang XC, Xie WM, Sun J, Chang KL, Kuo JH, Xie WH, Liu C, Sun SY, Buyukada M, Evrendilek F. Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks. Appl Energy. 2018;212:786–95.

    Article  CAS  Google Scholar 

  18. Zhou H, Meng A, Long Y, Li Q, Zhang Y. An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value. Renew Sustain Energy Rev. 2014;36:107–22.

    Article  CAS  Google Scholar 

  19. Fang SW, Gu WL, Chen L, Yu ZS, Dai MQ, Lin Y, Liao YF, Ma XQ. Ultrasonic pretreatment effects on the co-pyrolysis of municipal solid waste and paper sludge through orthogonal test. Bioresour Technol. 2018;258:5–11.

    Article  CAS  PubMed  Google Scholar 

  20. Chen JB, Mu L, Cai JC, Yin HC, Song XG, Li AM. Thermal characteristics and kinetics of refining and chemicals wastewater, lignite and their blends during combustion. Energy Convers Manage. 2015;100:201–11.

    Article  CAS  Google Scholar 

  21. Xie WH, Wen ST, Liu JY, Xie WM, Kuo JH, Lu XW, Sun SY, Chang KL, Buyukada M, Evrendilek F. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: thermal conversion characteristics, kinetics, and thermodynamics. Bioresour Technol. 2018;255:88–95.

    Article  CAS  PubMed  Google Scholar 

  22. Li JP, Hu JQ, Wang T, Gan JH, Xie JP, Shui YH, Liu JX, Xue YJ. Thermogravimetric analysis of the co-combustion of residual petrochemical sludge and municipal sewage sludge. Thermochim Acta. 2019;673:60–7.

    Article  CAS  Google Scholar 

  23. Wang ZQ, Hong C, Xing Y, Li YF, Feng LH, Jia MM. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: with and without catalysts. Waste Manage. 2018;74:288–96.

    Article  CAS  Google Scholar 

  24. Yang Y, Lu XF, Wang QH. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis. Energy Convers Manage. 2017;136:99–107.

    Article  CAS  Google Scholar 

  25. Luo R, Zhou QL. Combustion kinetic behavior of different ash contents coals co-firing with biomass and the interaction analysis. J Therm Anal Calorim. 2017;128:567–80.

    Article  CAS  Google Scholar 

  26. Li XG, Miao WJ, Lv Y, Wang YB, Gao CS, Jiang DB. TGA-FTIR investigation on the co-combustion characteristics of heavy oil fly ash and municipal sewage sludge. Thermochim Acta. 2018;666:1–9.

    Article  CAS  Google Scholar 

  27. Zhang YP, He Q, Cao Y, Bao S, Zhou S, Tian ZF, Wang XF, Peng XM, Zhang XY, Zhu DL, She SK. Interactions of tobacco shred and other tobacco-based materials during co-pyrolysis and co-combustion. J Therm Anal Calorim. 2019;136:1711–21.

    Article  CAS  Google Scholar 

  28. Zhang YY, Zhao JT, Ma ZB, Yang FL, Cheng FQ. Effect of oxygen concentration on oxy-fuel combustion characteristic and interactions of coal gangue and pine sawdust. Waste Manage. 2019;87:288–94.

    Article  CAS  Google Scholar 

  29. Haykiri-Acma H, Yaman S. Interaction between biomass and different rank coals during co-pyrolysis. Renew Energy. 2010;35:288–92.

    Article  CAS  Google Scholar 

  30. Fang SW, Yu ZS, Lin YS, Hu SC, Liao YF, Ma XQ. Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste. Energy Convers Manage. 2015;101:626–31.

    Article  Google Scholar 

  31. Wang Q, Wang GW, Zhang JL, Wang HY. Thermal and kinetic behaviors of pyrolytic carbon black and gas coal in co-combustion. J Therm Anal Calorim. 2019;137:193–204.

    Article  CAS  Google Scholar 

  32. Chen JC, Yao H, Liu JY, Liu C, Xie WM, Kuo JH, Zhang XC, Li SP, Liang JL, Sun SY, Buyukada M, Evrendilek F. The mixture of sewage sludge and biomass waste as solid biofuels: process characteristic and environmental implication. Renew Energy. 2019;139:707–17.

    Article  CAS  Google Scholar 

  33. Zhang YY, Nakano J, Liu LL, Wang XD, Zhang ZT. Co-combustion and emission characteristics of coal gangue and low-quality coal. J Therm Anal Calorim. 2015;120:1883–92.

    Article  CAS  Google Scholar 

  34. Jiang LB, Yuan XZ, Li H, Xiao ZH, Liang J, Wang H, Wu ZB, Chen XH, Zeng GM. Pyrolysis and combustion kinetics of sludge–camphor pellet thermal decomposition using thermogravimetric analysis. Energy Convers Manage. 2015;106:282–9.

    Article  CAS  Google Scholar 

  35. Sun G, Zhang G, Liu JY, Xie WM, Kuo JH, Lu XW, Buyukada M, Evrendilek F, Sun SY. Thermogravimetric and mass-spectrometric analyses of combustion of spent potlining under N2/O2 and CO2/O2 atmospheres. Waste Manage. 2019;87:237–49.

    Article  CAS  Google Scholar 

  36. Huang Z, Deng ZB, Chen DZ, He F, Liu S, Zhao K, Wei GQ, Zheng AQ, Zhao ZL, Li HB. Thermodynamic analysis and kinetic investigations on biomass char chemical looping gasification using Fe-Ni bimetallic oxygen carrier. Energy. 2017;141:1836–44.

    Article  CAS  Google Scholar 

  37. Zou C, Ma C, Zhao JX, Shi RM, Li XM. Characterization and non-isothermal kinetics of Shenmu bituminous coal devolatilization by TG-MS. J Anal Appl Pyroly. 2017;127:309–20.

    Article  CAS  Google Scholar 

  38. Yao HF, He BS, Ding GC, Tong WX, Kuang YC. Thermogravimetric analyses of oxy-fuel co-combustion of semi-coke and bituminous coal. Appl Therm Eng. 2019;156:708–21.

    Article  CAS  Google Scholar 

  39. Barbanera M, Cotana F, Matteo UD. Co-combustion performance and kinetic study of solid digestate with gasification biochar. Renew Energy. 2018;121:597–605.

    Article  CAS  Google Scholar 

  40. Naqvi SR, Hameed Z, Tariq R, Taqvi SA, Ali I, Niazi MBK, Noor T, Hussain A, Iqbal N, Shahbaz M. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Manage. 2019;85:131–40.

    Article  CAS  Google Scholar 

  41. Wang CA, Zhang XM, Liu YH, Che DF. Pyrolysis and combustion characteristics of coals in oxyfuel combustion. Appl Energy. 2012;97:264–73.

    Article  CAS  Google Scholar 

  42. Chen WM, Shi SK, Zhang J, Chen MZ, Zhou XY. Co-pyrolysis of waste newspaper with high-density polyethylene: synergistic effect and oil characterization. Energy Convers Manage. 2016;112:41–8.

    Article  CAS  Google Scholar 

  43. Liu C, Liu JY, Sun G, Xie WM, Kuo JH, Li SP, Liang JL, Chang KL, Sun SY, Buyukada M, Evrendilek F. Thermogravimetric analysis of (co-)combustion of oily sludge and litchi peels: combustion characterization, interactions and kinetics. Thermochim Acta. 2018;667:207–18.

    Article  CAS  Google Scholar 

  44. Han XX, Kulaots I, Jiang XM, Suuberg EM. Review of oil shale semicoke and its combustion utilization. Fuel. 2014;126:143–61.

    Article  CAS  Google Scholar 

  45. Chen CX, Ma XQ, Liu K. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Appl Energy. 2011;88:3189–96.

    Article  CAS  Google Scholar 

  46. Yuan XS, He T, Cao HL, Yuan QX. Cattle manure pyrolysis process: kinetic and thermodynamic analysis with isoconversional methods. Renew. Energy. 2017;107:489–96.

    Article  CAS  Google Scholar 

  47. Huang LM, Xie CD, Liu JY, Zhang XC, Chang KL, Kuo JH, Sun J, Xie WM, Zheng L, Sun SY, Buyukada M, Evrendilek F. Influence of catalysts on co-combustion of sewage sludge and water hyacinth blends as determined by TG-MS analysis. Bioresour Technol. 2018;247:217–25.

    Article  CAS  PubMed  Google Scholar 

  48. Gan DKW, Loy ACM, Chin BLF, Yusup S, Unrean P, Rianawati E, Acda MN. Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts. Bioresour Technol. 2018;265:180–90.

    Article  CAS  PubMed  Google Scholar 

  49. Ahmad MS, Mehmood MA, Ayed OS, Ye GB, Luo HB, Ibrahim M, Rashid U, Nehdi IA, Qadir G. Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresour Technol. 2017;224:708–13.

    Article  CAS  PubMed  Google Scholar 

  50. Huang JL, Liu JY, Chen JC, Xie WM, Kuo JH, Lu XW, Chang KL, Wen S, Sun G, Cai HM, Buyukada M, Evrendilek F. Combustion behaviors of spent mushroom substrate using TG-MS and TGFTIR: thermal conversion, kinetic, thermodynamic and emission analyses. Bioresour Technol. 2018;266:389–97.

    Article  CAS  PubMed  Google Scholar 

  51. Maia AAD, Morais LCD. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour Technol. 2016;204:157–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial supports from the Fundamental Research Funds for the Central Universities (2018YJS132), the National Key R&D Program of China, Grant No. 2017YFB0602003, and the National Natural Science Foundation of China, Grant No. 51576014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boshu He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, G., He, B., Yao, H. et al. Co-combustion behaviors of municipal solid waste and low-rank coal semi-coke in air or oxygen/carbon dioxide atmospheres. J Therm Anal Calorim 143, 619–635 (2021). https://doi.org/10.1007/s10973-019-09170-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09170-z

Keywords

Navigation