Skip to main content
Log in

Interactions of tobacco shred and other tobacco-based materials during co-pyrolysis and co-combustion

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The interactions of tobacco shred with other tobacco-based materials, like expanded cut tobacco, cut reconstituted tobacco and expanded cut stem during co-pyrolysis and co-combustion, were investigated using thermogravimetric analyzer. The results illustrated that the interactions barely existed during the co-pyrolysis, but promoted the combustion during the co-combustion process of all binary mixtures. Oxidative decompositions of solid char for all binary mixtures were promoted by the interactions during the co-combustion process. The activation energy distributions, which were obtained by the Kissinger–Akahira–Sunose method from the TG data, well explained how the interactions influenced the combustion of the binary mixtures. For further understanding the effects of interactions on the combustion behaviors of the mixed materials, the release characteristics of heat, smoke, CO and CO2 were determined by the cone calorimeter tests. Results demonstrated that the interactions among the binary mixtures enhanced the HRR rates and THR values, but reduced the smoke production rates, the amounts of total smoke production and the CO/CO2 ratio. Thus, it could be concluded that the health harm of cigarette smoking can be reduced by blending these tobacco-based materials to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carmella SG, Hecht SS, Tso TC, et al. Roles of tobacco cellulose, sugars and chlorogenic acid as precursors to catechol in cigarette smoke. J Agric Food Chem. 1984;32:267–73.

    Article  CAS  Google Scholar 

  2. Schmeltz I, Wenger A, Hoffmann D, et al. Chemical studies on tobacco smoke. 53. Use of radioactive tobacco isolates for studying the formation of smoke components. J Agric Food Chem. 1978;26:234–9.

    Article  CAS  Google Scholar 

  3. Stedman RL. The chemical composition of tobacco and tobacco smoke. Chem Rev. 1968;68:153–207.

    Article  CAS  PubMed  Google Scholar 

  4. Baker RR. Smoke generation inside a burning cigarette: modifying combustion to develop cigarettes that may be less hazardous to health. Prog Energy Combust Sci. 2006;32(4):373–85.

    Article  CAS  Google Scholar 

  5. Halter HM, Ito TI. Effect of tobacco reconstitution and expansion processes on smoke composition. Recent Adv Tob Sci. 1978;32:3239–45.

    Google Scholar 

  6. Zhong W, Zhu C, Shu M, et al. Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas, sp. ZUTSKD. Bioresour Technol. 2010;101(18):6935–41.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou S, Ning M, Xu Y, et al. Thermal degradation and combustion behavior of reconstituted tobacco sheet treated with ammonium polyphosphate. J Anal Appl Pyrol. 2013;100(3):223–9.

    Article  CAS  Google Scholar 

  8. Zhou S, Ning M, Xu Y, et al. Effects of melamine phosphate on the thermal decomposition and combustion behavior of reconstituted tobacco sheet. J Therm Anal Calorim. 2013;112(3):1269–76.

    Article  CAS  Google Scholar 

  9. Wang L, Wen Y, Sun D, et al. Study on the decrease of harmful substance in paper-process reconstituted tobacco sheet. Adv Mater Res. 2011;314–316:2338–43.

    Google Scholar 

  10. Theophilus EH, Pence DH, Meckley DR, et al. Toxicological evaluation of expanded shredded tobacco stems. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2004;42(4):631–9.

    Article  CAS  Google Scholar 

  11. Green C, Schumacher J, Rodgman A. The expansion of tobacco and its effect on cigarette mainstream smoke properties. Beiträge Zur Tabakforschung. 2014;22(5):319–45.

    Article  Google Scholar 

  12. Ding M, Wei B, Zhang Z, et al. Effect of potassium organic and inorganic salts on thermal decomposition of reconstituted tobacco sheet. J Therm Anal Calorim. 2017;129(2):1–10.

    Article  CAS  Google Scholar 

  13. Djulančić N, Radojičić V, Srbinovska M. The influence of tobacco blend composition on carbon monoxide formation in mainstream cigarette smoke. Arch Ind Hyg Toxicol. 2013;64(1):107–13.

    Google Scholar 

  14. Wang C, Zhou S, Xu Y, et al. Combustion characters of cut reconstituted tobacco, expanded cut tobacco and expanded cut stem. Tob Sci Technol. 2013;1:5–9.

    Google Scholar 

  15. Yang Z, Zhang S, Liu L, et al. Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor. Bioresour Technol. 2012;110(1):595–602.

    Article  CAS  PubMed  Google Scholar 

  16. Qin G, Li B, Lu D, et al. Combustion property and mechanism of tobacco biomass. Tob Sci Technol. 2015;1:76–81.

    Google Scholar 

  17. Bockhorn H, Hornung A, Hornung U, et al. Modelling of isothermal and dynamic pyrolysis of plastics considering non-homogeneous temperature distribution and detailed degradation mechanism. J Anal Appl Pyrol. 1999;49(1–2):53–74.

    Article  CAS  Google Scholar 

  18. Association Korean Standards. Reaction-to-fire tests-heat release, smoke production and mass loss rate-Part 1: Heat release rate (cone calorimeter method).

  19. Zhou S, Wang X, Ning M, et al. An insight into the roles of exogenous potassium salts on the thermal degradation of fuel-cured tobacco. J Anal Appl Pyrol. 2017;123:385–94.

    Article  CAS  Google Scholar 

  20. Zhou S, Wang X, He Q, et al. Thermal degradation and flammability of low ignition propensity cigarette paper. J Anal Appl Pyrol. 2014;110:24–33.

    Article  CAS  Google Scholar 

  21. Proniewicz LM, Paluszkiewicz C, Wesełucha-Birczyńska A, et al. FT-IR and FT-Raman study of hydrothermally degradated cellulose. J Mol Struct. 2001;596(1):163–9.

    Article  CAS  Google Scholar 

  22. Wang X, Chen Q, Xin L. Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll. 2014;38(3):129–37.

    Article  CAS  Google Scholar 

  23. Łojewska J, Miśkowiec P, Łojewski T, et al. Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab. 2005;88(3):512–20.

    Article  CAS  Google Scholar 

  24. Chen D, Zheng Y, Zhu X. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages. Bioresour Technol. 2013;131(3):40–6.

    Article  CAS  PubMed  Google Scholar 

  25. Buryan P, Staff M. Pyrolysis of the waste biomass. J Therm Anal Calorim. 2008;93(2):637–40.

    Article  CAS  Google Scholar 

  26. Zhou S, Xu Y, Wang C, et al. Pyrolysis behavior of pectin under the conditions that simulate cigarette smoking. J Anal Appl Pyrol. 2011;91(1):232–40.

    Article  CAS  Google Scholar 

  27. Yıldız Z, Ceylan S. Pyrolysis of tobacco factory waste biomass. Journal of Thermal Analysis & Calorimetry. 2018; https://doi.org/10.1007/s10973-018-7630-z.

  28. Zhou H, Long Y, Meng A, et al. Interactions of three municipal solid waste components during co-pyrolysis. J Anal Appl Pyrol. 2015;111:265–71.

    Article  CAS  Google Scholar 

  29. Branca C, Blasi CD. Multi-step mechanism for the devolatilization of biomass fast pyrolysis oils. Ind Eng Chem Res. 2006;45:5891–9.

    Article  CAS  Google Scholar 

  30. Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  31. Moriana R, Vilapana F, Karlsson S, et al. Improved thermomechanical properties by the addition of natural fibres in starch-based sustainable biocomposites. Compos Appl Sci Manuf. 2011;42:30–40.

    Article  CAS  Google Scholar 

  32. Manya JJ, Velo E, Puigjaner L. Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Chem Res. 2003;42:434–41.

    Article  CAS  Google Scholar 

  33. Zhu X, Chen Z, Xiao B, et al. Co-pyrolysis behaviors and kinetics of sewage sludge and pine sawdust blends under non-isothermal conditions. J Therm Anal Calorim. 2015;119(3):2269–79.

    Article  CAS  Google Scholar 

  34. Raveendran K, Ganesh A, Khilar KC. Pyrolysis characteristics of biomass and biomass components. Fuel. 1996;75(8):987–98.

    Article  CAS  Google Scholar 

  35. Yang H, Yan R, Chen H, et al. Liang, In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels. 2006;20(1):388–93.

    Article  CAS  Google Scholar 

  36. Valverde JL, Curbelo C, Mayo O, et al. Pyrolysis kinetics of tobacco dust. Chem Eng Res Des. 2000;78(6):921–4.

    Article  CAS  Google Scholar 

  37. Wang W, Wang Y, Yang L, et al. Studies on thermal behavior of reconstituted tobacco sheet. Thermochim Acta. 2005;437(1):7–11.

    Article  CAS  Google Scholar 

  38. Yu L, Wang S, Jiang X, et al. Thermal analysis studies on combustion characteristics of seaweed. J Therm Anal Calorim. 2008;93(2):611–7.

    Article  CAS  Google Scholar 

  39. Chao M, Li W, Wang X. Influence of antioxidant on the thermal-oxidative degradation behavior and oxidation stability of synthetic ester. Thermochim Acta. 2014;591:16–21.

    Article  CAS  Google Scholar 

  40. Vyazovkin S, Burnham AK, Criado JM, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  41. Schartel B, Bartholmai M, Knoll U. Some comments on the use of cone calorimeter data. Polym Degrad Stab. 2005;88(3):540–7.

    Article  CAS  Google Scholar 

  42. Fateh T, Rogaume T, Luche J, et al. Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter-FTIR apparatus. J Anal Appl Pyrol. 2014;107(6):87–100.

    Article  CAS  Google Scholar 

  43. Petrella RV. The assessment of full-scale fire hazards from cone calorimeter data. J Fire Sci. 1994;12(1):14–43.

    Article  CAS  Google Scholar 

  44. Ferge T, Maguhn J, Hafner K, et al. On-line analysis of gas-phase composition in the combustion chamber and particle emission characteristics during combustion of wood and waste in a small batch reactor. Environ Sci Technol. 2005;39(6):1393.

    Article  CAS  PubMed  Google Scholar 

  45. Lee BH, Kim HS, Kim S, et al. Evaluating the flammability of wood-based panels and gypsum particleboard using a cone calorimeter. Constr Build Mater. 2011;25(7):3044–50.

    Article  Google Scholar 

  46. Wang P, Zhang J, Shao Q, et al. Physicochemical properties evolution of chars from palm kernel shell pyrolysis. J Therm Anal Calorim. 2018;133(3):1271–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express the great appreciation of the financial support from China Tobacco Anhui Industrial Corporation (No. 2017122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., He, Q., Cao, Y. et al. Interactions of tobacco shred and other tobacco-based materials during co-pyrolysis and co-combustion. J Therm Anal Calorim 136, 1711–1721 (2019). https://doi.org/10.1007/s10973-018-7836-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7836-0

Keywords

Navigation