Skip to main content
Log in

Combustion kinetic behavior of different ash contents coals co-firing with biomass and the interaction analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Coal co-firing with biomass is considered as a prospective energy production method in the world. The different coals and biomass co-firing is studied for the combustion behavior and the interactions by thermogravimetric analysis. The effects of coal ash content, biomass mixing ratio and oxygen concentration on coal/biomass interactions are discussed. The interaction is found significantly in the blends of biomass and low ash content coal under small biomass mixing ratio. Biomass mixing makes blends burning sensitive to oxygen. S N is utilized to evaluate the blends combustibility. Biomass mixing improves low ash content coal combustibility, but weakens S N of high ash content coal to some extent. Kinetic analysis is conducted through Coats–Redfern method with selecting appropriate mechanism function. Blends of coal and biomass burning activity energy variation are impacted by the coal ash contents. Biomass mixing can help high ash content coal burning easily, but not guarantee low ash content coal burning process with low activity energy. The apparent E of blend affected by oxygen varies significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tchapda A, Pisupati S. A review of thermal co-conversion of coal and biomass/waste. Energies. 2014;7(3):1098–148. doi:10.3390/en7031098.

    Article  CAS  Google Scholar 

  2. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6. doi:10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  3. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201(491):68–9. doi:10.1038/201068a0.

    Article  CAS  Google Scholar 

  4. Carrasco F. The evaluation of kinetic parameters from thermogravimetric data. Thermochim Acta. 1993;213:20.

    Article  Google Scholar 

  5. Biagini E, Luigi F, Petarca L, Tognotti L. Devolatilization rate of biomasses and coal–biomass blends: an experimental investigation. Fuel. 2002;81(8):10.

    Article  Google Scholar 

  6. Idris SS, Abd Rahman N, Ismail K, Alias AB, Abd Rashid Z, Aris MJ. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol. 2010;101(12):4584–92. doi:10.1016/j.biortech.2010.01.059.

    Article  CAS  Google Scholar 

  7. Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010;101(14):5601–8. doi:10.1016/j.biortech.2010.02.008.

    Article  CAS  Google Scholar 

  8. Jeong HJ, Seo DK, Park SS, Hwang J. A comprehensive study on co-pyrolysis of bituminous coal and pine sawdust using TG. J Therm Anal Calorim. 2015;120(3):1867–75. doi:10.1007/s10973-015-4470-y.

    Article  CAS  Google Scholar 

  9. Vhathvarothai N, Ness J, Yu J. An investigation of thermal behaviour of biomass and coal during co-combustion using thermogravimetric analysis (TGA). Int J Energy Res. 2014;38(6):804–12. doi:10.1002/er.3083.

    Article  CAS  Google Scholar 

  10. Du Y, Jiang X, Ma X, Liu X, Lv G, Jin Y, et al. Evaluation of cofiring bioferment residue with coal at different proportions: combustion characteristics and kinetics. Energy Fuels. 2013;27(10):6295–303. doi:10.1021/ef401536b.

    Article  CAS  Google Scholar 

  11. Wang X, Si J, Tan H, Niu Y, Xu C, Xu T. Kinetics investigation on the combustion of waste capsicum stalks in Western China using thermogravimetric analysis. J Therm Anal Calorim. 2011;109(1):403–12. doi:10.1007/s10973-011-1556-z.

    Article  Google Scholar 

  12. Muthuraman M, Namioka T, Yoshikawa K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: a thermogravimetric analysis. Appl Energy. 2010;87(1):141–8. doi:10.1016/j.apenergy.2009.08.004.

    Article  CAS  Google Scholar 

  13. Wang C, Wang F, Yang Q, Liang R. Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass Bioenergy. 2009;33(1):50–6. doi:10.1016/j.biombioe.2008.04.013.

    Article  Google Scholar 

  14. Kocabaş-Ataklı ZÖ, Okyay-Öner F, Yürüm Y. Combustion characteristics of Turkish hazelnut shell biomass, lignite coal, and their respective blends via thermogravimetric analysis. J Therm Anal Calorim. 2015;119(3):1723–9. doi:10.1007/s10973-014-4348-4.

    Article  Google Scholar 

  15. Contreras ML, García-Frutos FJ, Bahillo A. Study of the thermal behaviour of coal/biomass blends during oxy-fuel combustion by thermogravimetric analysis. J Therm Anal Calorim. 2016;123(2):1643–55. doi:10.1007/s10973-015-5067-1.

    Article  CAS  Google Scholar 

  16. Vuthaluru HB. Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis. Bioresour Technol. 2004;92(2):187–95. doi:10.1016/j.biortech.2003.08.008.

    Article  CAS  Google Scholar 

  17. Kastanaki E, Vamvuka D. A comparative reactivity and kinetic study on the combustion of coal–biomass char blends. Fuel. 2006;85(9):1186–93. doi:10.1016/j.fuel.2005.11.004.

    Article  CAS  Google Scholar 

  18. Zhang X, Liu Y, Wang C, Che D. Experimental study on interaction and kinetic characteristics during combustion of blended coals. J Therm Anal Calorim. 2011;107(3):935–42. doi:10.1007/s10973-011-1657-8.

    Article  Google Scholar 

  19. Wang C, Liu Y, Zhang X, Che D. A study on coal properties and combustion characteristics of blended coals in Northwestern China. Energy Fuels. 2011;25(8):3634–45. doi:10.1021/ef200686d.

    Article  CAS  Google Scholar 

  20. Zhou L, Luo T, Huang Q. Co-pyrolysis characteristics and kinetics of coal and plastic blends. Energy Convers Manag. 2009;50(3):705–10. doi:10.1016/j.enconman.2008.10.007.

    Article  CAS  Google Scholar 

  21. Morgan TJ, Kandiyoti R. Pyrolysis of coals and biomass: analysis of thermal breakdown and its products. Chem Rev. 2014;114(3):1547–607. doi:10.1021/cr400194p.

    Article  CAS  Google Scholar 

  22. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23. doi:10.1016/j.tca.2014.05.036.

    Article  CAS  Google Scholar 

  23. Zhou L, Wang Y, Huang Q, Cai J. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Process Technol. 2006;87(11):963–9. doi:10.1016/j.fuproc.2006.07.002.

    Article  CAS  Google Scholar 

  24. Wang C, Dou B, Song Y, Chen H, Yang M, Xu Y. Kinetic study on non-isothermal pyrolysis of sucrose biomass. Energy Fuels. 2014;28(6):3793–801. doi:10.1021/ef500940q.

    Article  CAS  Google Scholar 

  25. López-Fonseca R, Landa I, Elizundia U, Gutiérrez-Ortiz MA, González-Velasco JR. A kinetic study of the combustion of porous synthetic soot. Chem Eng J. 2007;129(1–3):41–9. doi:10.1016/j.cej.2006.10.029.

    Article  Google Scholar 

  26. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19. doi:10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  27. Xu Jinyuan XT. Combustion. Beijing: China Machine Press; 1980.

    Google Scholar 

  28. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57(4):217–21.

    Article  CAS  Google Scholar 

  29. Mittemeijer EJ. Review: analysis of the kinetics of phase transformations. J Mater Sci. 1992;27:3977–87.

    Article  CAS  Google Scholar 

  30. Cruz G, Crnkovic PM. Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres. J Therm Anal Calorim. 2015;123(2):1003–11. doi:10.1007/s10973-015-4908-2.

    Article  Google Scholar 

  31. Dahiya JB, Kumar K, Muller-Hagedorn M, Bockhorn H. Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods. Polym Int. 2008;57(5):722–9. doi:10.1002/pi.2398.

    Article  CAS  Google Scholar 

  32. Ozawa T. A new method of quantitative differential thermal analysis. Bull Chem Soc Jpn. 1966;39:2071–85.

    Article  CAS  Google Scholar 

  33. Janković B, Mentus S, Jelić D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere. Phys B. 2009;404(16):2263–9. doi:10.1016/j.physb.2009.04.024.

    Article  Google Scholar 

  34. Brown ME, Maciejewski M, Vyazovkin S. Computational aspects of kinetic analysis part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  35. Friedman HL. Kinetic of thermal degradation of char-forming plastics from thermogravimetry. Application to phenolic plastic. J Polym Sci Part C Polym Symp. 1964;6(1):183–95.

    Article  Google Scholar 

  36. Cumming JW. Reactivity assessment of coals via a weighted mean activation energy. Fuel. 1984;63(10):1436–40. doi:10.1016/0016-2361(84)90353-3.

    Article  CAS  Google Scholar 

  37. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8. doi:10.1016/j.fuel.2006.12.013.

    Article  CAS  Google Scholar 

  38. Tie M, Hanping C, Guolai Y. Experimental studies on biomass pyrolysis by TGA. Acta Energ Sol Sin. 2008;29(1):109–13.

    Google Scholar 

  39. Nie Q, Sun S, Zhengqi L, et al. Thermogravimetric analysis on the combustion characteristics of brown coal blends. J Combust Sci Technol. 2001;7(1):5.

    Google Scholar 

  40. Li X, Ma B, Xu L, Hu Z, Wang X. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta. 2006;441(1):79–83. doi:10.1016/j.tca.2005.11.044.

    Article  CAS  Google Scholar 

  41. Zhang Y, Zhang L, Duan F, Jiang X, Sun X, Chyang C. Co-combustion characteristics of sewage sludge with different rank bituminous coals under the O2/CO2 atmosphere. J Therm Anal Calorim. 2015;121(2):729–36. doi:10.1007/s10973-015-4582-4.

    Article  CAS  Google Scholar 

  42. Huang XY, Jiang XM, Han XX, Wang H. Combustion characteristics of fine- and micro-pulverized coal in the mixture of O−2/CO2. Energy Fuels. 2008;22(6):3756–62. doi:10.1021/ef800444c.

    Article  CAS  Google Scholar 

  43. Vamvuka D, Pasadakis N, Kastanaki E. Kinetic modeling of coal/agricultural by-product blends. Energy Fuels. 2003;17(3):10.

    Article  Google Scholar 

  44. Xu Y, Lin S, Yuan H, Zhu K, He X, Chen G. Thermogravimetric analysis on the combustion characteristics for blended coals. In: Cen K, Chi Y, Wang F, editors. Challenges of power engineering and environment. Springer: Berlin; 2007. p. 153–6.

    Chapter  Google Scholar 

  45. Wu Z, Wang S, Zhao J, Chen L, Meng H. Thermal behavior and char structure evolution of bituminous coal blends with edible fungi residue during co-pyrolysis. Energy Fuels. 2014;28(3):1792–801. doi:10.1021/ef500261q.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2016YFC0801904), the Program for New Century Excellent Talents in University of Chinese Education Ministry (NCET-13-0468), and the Fundamental Research Funds for the Central Universities in Xi’an Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qulan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, R., Zhou, Q. Combustion kinetic behavior of different ash contents coals co-firing with biomass and the interaction analysis. J Therm Anal Calorim 128, 567–580 (2017). https://doi.org/10.1007/s10973-016-5867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5867-y

Keywords

Navigation