Skip to main content
Log in

Crystallization kinetics of Li2O–Al2O3–GeO2–P2O5 glass–ceramics system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Lithium aluminum germanium phosphate glass–ceramics with NASICON structure find potential application in the field of energy storage device/solid-state battery. Two different glasses with nominal compositions (a) Li1.5Al0.5Ge1.5P2.9Si0.1O12 (LAGP1) and (b) Li1.5Al0.5Ge1.5P2.5Si0.5O12 (LAGP2) were prepared by standard melt-quench technique, and crystallization kinetics phenomenon in these systems was studied using differential thermal analysis technique (DTA). In addition to different conventional methods for crystallization kinetics analysis, model-free kinetics was also applied. The values obtained for activation energy of crystallization (E a) are compared and used for determination of crystallization index, n and m. The E a value obtained for LAGP1 is 375 ± 17 kJ mol−1 which is higher as compared to the E a value of LAGP2, 199 ± 22 kJ mol−1. LAGP2 with higher amount of Si(0.5) causes significant structural modification in the phosphate network and an early phase separation in the silico-phosphate glass. Thus, LAGP2 shows lower activation energy value as compared to LAGP1. The kinetic parameter, n, related to crystal nucleation, was evaluated from crystallized volume fraction (x) at a fixed temperature using predetermined E a value, and other parameter ‘m’ related to the crystal growth was determined using the modified Kissinger equation. The model-free kinetics was used to evaluate the variation of E a, m and n with temperature and suggests a dynamic nucleation and crystallization process with progressive change in kinetic parameters. In LAGP1 sample, an unusual increase in E a value was observed at x value > 0.2 and can be correlated with the existing ‘self-feeding’ process, which is observed in DTA plots. In both of these systems, the values of n and m are found to be equal and more than 3 which suggests three-dimensional growths of Li1.5Ge1.5Al0.5(PO4) crystals on a constant number of already grown nuclei. XRD and micro-Raman spectroscopy were used to identify the crystalline phase formed and various structural units present in the glass and glass–ceramics samples. Minor amount of LiAlPO4 was confirmed from XRD and Raman spectroscopy along with major Li1.5Ge1.5Al0.5(PO4) phase. In addition, using advanced kinetics and technology solution software non-isothermal data were simulated and the isothermal conversion data were extracted for various temperatures which are found to be very close to experimental isothermal data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wang Y, Richards WD, Ong SP, Mara LJ, Kim JC, Mo Y, Ceder G. Desgin principles for solid-state lithium superionic conductors. Nat Mater. 2015;. https://doi.org/10.1038/NMAT4369.

    Google Scholar 

  2. Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD. Thin-film lithium and lithium-ion batteries. Solid State Ion. 2000;135:33–45.

    Article  CAS  Google Scholar 

  3. Matusita K, Komatsu T, Yokota Y. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.

    Article  CAS  Google Scholar 

  4. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177.

    Article  CAS  Google Scholar 

  5. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  6. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301–24.

    Article  CAS  Google Scholar 

  7. Kasprzyk M, Sroda M, Szumera M. Influence of Gd2O3 on thermal stability of oxyfluoride glasses. J Therm Anal Calorim. 2017;130:207–20.

    Article  CAS  Google Scholar 

  8. Davim EJC, Senos AMR, Fernandes MHV. Non-isothermal crystallization kinetics of a Si–Ca–P–Mg bioactive glass. J Therm Anal Calorim. 2014;117:643–51.

    Article  CAS  Google Scholar 

  9. Sinouh H, Bih L, Manoun B, Lazor P. Thermal analysis and crystallization of the glasses inside the BaO–SrO–TiO2–NaPO3 system. J Therm Anal Calorim. 2017;128:883–90.

    Article  CAS  Google Scholar 

  10. Basaran C, Canikoglu N, Toplan HO, Toplan N. The crystallization kinetics of the MgO–Al2O3–SiO2–TiO2 glass ceramics system produced from industrial waste. J Therm Anal Calorim. 2016;125:695–701.

    Article  CAS  Google Scholar 

  11. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans AIME. 1939;135:396–415.

    Google Scholar 

  12. Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  13. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution. J Chem Phys. 1940;8:812–24.

    Article  Google Scholar 

  14. Matusita K, Sakka S. Kinetic study of the crystallization of glass by differential scanning calorimetry. Phys Chem Glasses. 1979;20:81–4.

    CAS  Google Scholar 

  15. Golz J. Crystallization of glassy 2PbO·SiO2 studied by DTA. Phys Chem Glasses. 1977;18:32–5.

    Google Scholar 

  16. Marseglia EA. Kinetic theory of crystallization of amorphous material. J Non Cryst Solids. 1980;41:31–6.

    Article  CAS  Google Scholar 

  17. Wang HY, He K, Zu KC, Chen J. Study on crystallization kinetics of Li2O–Al2O3–GeO2–P2O5 glass by non-isothermal technique. Adv Mater Res. 2012;535–537:1629–33.

    Article  Google Scholar 

  18. Wang J, Lio C, Zhang G, Xie J, Han J, Zhao X. Crystallization properties of magnesium aluminosilicate glass–ceramics with and without rare-earth oxides. J Non Cryst Solids. 2015;419:1–5.

    Article  CAS  Google Scholar 

  19. Khawam A, Douglas R, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics II. Nonisothermal kinetic studies. Thermochim Acta. 2005;436:101–12.

    Article  CAS  Google Scholar 

  20. Pacurariu C, Lazau RI, Lazau I, Ianos R, Tita B. Non-isothermal crystallization kinetics of some basaltic glass–ceramics containing CaF2 as nucleation agent. J Therm Anal Calorim. 2009;97:507–13.

    Article  CAS  Google Scholar 

  21. Vlase T, Pacurariu C, Lazau RI, Lazau I. Kinetic studies of the crystallization process of glass–ceramics based on basalt. J Therm Anal Calorim. 2007;88:625–9.

    Article  CAS  Google Scholar 

  22. Pacurariu C, Lazau I. Non-isothermal crystallization kinetics of some glass–ceramics with pyroxene structure. J Non Cryst Solids. 2012;358:3332–7.

    Article  CAS  Google Scholar 

  23. Starink MJ. Activation energy determination for linear heating experiments; deviation due to neglecting the low temperature end of the temperature integral. J Mater Sci. 2007;42:483–9.

    Article  CAS  Google Scholar 

  24. Kun H, Yanhang W, Chengkui Z, Huifeng Z, Yonghua L, Jiang C, Bin H, Juanrong M. Influence of Al2O3 additions on crystallization mechanism and conductivity of Li2O–GeO2–P2O5 glass–ceramics. Physica B. 2011;406:3947–50.

    Article  Google Scholar 

  25. Rodrigues AM, Narváez-Semanate JL, Cabral AA, Rodrigues ACM. Deteremination of crystallization kinetics parameters of a Li1.5Al0.5Ge1.5(PO4)3 (LAGP) glass by differential scanning calorimetry. Mater Res. 2013;16:811–6.

    Article  CAS  Google Scholar 

  26. Kun H, Yanhang W, Chengkui Z, Yonghua L, Huifeng Z, Bin H, Jiang C. Crystallization kinetics of lithium aluminum germanium phosphate glass by DSC technique. J Wuhan Univ Technol Mater Sci Ed. 2012;27:63–6.

    Article  Google Scholar 

  27. Mohoric I, Krajnc M, Sebenik U. Model-free kinetics analysis of thermal degradation of polysiloxane lubricant. Chem Biochem Eng. 2009;23(4):493–6.

    CAS  Google Scholar 

  28. Syam Prasad N, Varma KBR. Crystallization kinetics of the LiBO2–Nb2O5 glass using differential thermal analysis. J Am Ceram Soc. 2005;88:357–61.

    Article  Google Scholar 

  29. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  30. Sestak J. Thermophysical properties of solids, their measurements and theoretical analysis, vol. 12D. Amsterdam: Elsevier; 1984.

    Google Scholar 

  31. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  32. Flyn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70A:487–523.

    Article  Google Scholar 

  33. Yang Q, Jiang Z. The study of criterion for glass crystallization kinetics. J Chin Ceram Soc. 1994;22:419–26.

    CAS  Google Scholar 

  34. Imran MMA. Crystallization kinetics, glass transition kinetics, and thermal stability of Se70−x Ga30In x (x = 5,10,15 and 20) semiconducting glasses. Physica B. 2011;406(3):482–7.

    Article  CAS  Google Scholar 

  35. Speyer RF. Kinetics of phase transformations in amorphous materials by DSC. Part I. Thermochim Acta. 1988;131:211–24.

    Article  CAS  Google Scholar 

  36. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  37. Zhang LY, Li H, Hu LL. Statistical structure analysis of GeO2 modified Yb3+: phosphate glasses based on Raman and FTIR study. J Alloys Compd. 2017;698:103–13.

    Article  CAS  Google Scholar 

  38. Kumar S, Murugavel S, Rao KJ. Absence of germanate anomaly in ternary lithium germanophosphate glasses: modification behavior of mixed glass system of strong and fragile formers. J Phys Chem B. 2001;105:5862–73.

    Article  CAS  Google Scholar 

  39. Shibata N, Horigudhi M, Edahiro T. Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3. J Non Cryst Solids. 1981;45:115–26.

    Article  CAS  Google Scholar 

  40. Francisco BE, Stoldt CR. Energetics ion transport in NASICON-type electrolytes. J Phys Chem C. 2015;119:16432–42.

    Article  CAS  Google Scholar 

  41. Plotnichenko VG, Sokolov VO, Koltashev VV, Dianov EM. On the structure of phosphosilicate glasses. J Non Cryst Solids. 2002;306:209–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Goswami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Goswami, M. & Krishnan, M. Crystallization kinetics of Li2O–Al2O3–GeO2–P2O5 glass–ceramics system. J Therm Anal Calorim 131, 2421–2431 (2018). https://doi.org/10.1007/s10973-017-6856-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6856-5

Keywords

Navigation