Skip to main content
Log in

Thermal analysis and crystallization of the glasses inside the BaO–SrO–TiO2–NaPO3 system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The xBa0.5Sr0.5TiO3–(1 − x)NaPO3 (x = 0–0.20 mol%) glasses were prepared by the conventional melt-quenching method. The amorphous state of the samples was verified by X-ray diffraction. The density, molar volume, glass transition temperature (T g), micro-hardness and the crystallization temperature (T c) are determined for each glass. It is found that they depend strongly on the chemical composition of the glasses. The results of the micro-hardness show an increase in the H v parameter with the Ba0.5Sr0.5TiO3 content. The crystallization of glasses is made by submitting samples to heat treatments, and the crystallized phases are identified by XRD. The kinetic of the crystallization is carried out by thermal analysis using DSC technique. The mechanism of crystallization is proposed according to the determined activation energy (E a) and the Avrami parameter (n). The structural approach of the glasses was realized out by IR spectroscopy. This technique has highlighted the co-existence of different phosphate and titanium structural units in the glassy-matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jones R, Zurcher P, Chu P, Taylor DJ, Lii YT, Jiang B, Maniar PD, Gillespie SJ. Memory applications based on ferroelectric and high-permittivity dielectric thin films. Microelectron Eng. 1995;29:3–10.

    Article  CAS  Google Scholar 

  2. MuÈcklich F, Janocha H. Smart materials: the IQ of materials in systems. Z Metallkd. 1996;873:57–364.

    Google Scholar 

  3. Sinouh H, Bih L, Azrour M, ElBouari A, Benmokhtar S, Manoun B, Belhorma B, Baudin T, Berthet P, Haumont R, Solas D. Elaboration and structural characterization of glasses inside the ternary SrO-TiO2-P2O5 system. J Phys Chem Solids. 2012;73:961–8.

    Article  CAS  Google Scholar 

  4. Yadav AK, Gautam C. Successive relaxor ferroelectric behavior in La modified (Ba, Sr)TiO3 borosilicate glass ceramics. J Mater Sci Mater Electron. 2014;25:3532–6.

    Article  CAS  Google Scholar 

  5. Herczog A. Microcrystalline BaTiO3 by crystallization from glass. J Am Ceram Soc. 1964;47:107–15.

    Article  CAS  Google Scholar 

  6. Ulrich DR. High dielectric thick films from screened circuit capacitors. Solid State Technol. 1969;12:30–8.

    Google Scholar 

  7. Sigaev VN, Sarkisov PD, Stefanovich SY, Pernice P, Aronne A. Glass ceramic textures based on new ferroelectric complex oxides. Ferroelectrics. 1999;233:165–85.

    Article  CAS  Google Scholar 

  8. Houng B, Kim CY, Haun MJ. Densification, crystallization, and electrical properties of lead zirconate titanate glass-ceramics. IEEE T Ultrason Ferr. 2000;47:808–18.

    Article  CAS  Google Scholar 

  9. Duan F, Fang C, Ding Z, Zhu H. Properties and applications of a piezoelectric glass-crystalline phase composite in the BaO–SrO–TiO2–SiO2 system. Mat Lett. 1998;34:184–7.

    Article  CAS  Google Scholar 

  10. Lurie KA, Yakovlev VV. Method of control and optimization of microwave heating in waveguide systems. IEEE Trans Mag. 1999;35:1777–80.

    Article  Google Scholar 

  11. Ruiz-Valdés JJ, Gorokhovsky AV, Escalante-Garcìa JI, Mendoza-Suárez G. Glass-ceramic materials with regulated dielectric properties based on the system BaO–PbO–TiO2–B2O3–Al 2O3. J Eur Ceram Soc. 2004;24:1505–8.

    Article  Google Scholar 

  12. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;32:751–67.

    Article  Google Scholar 

  13. Brow RK. Review: the structure of simple phosphate glasses. J Non-Cryst Solids. 2000;263–264:1–28.

    Article  Google Scholar 

  14. Shaw CM, Shelby JE. Preparation and properties of stannous fluorophosphate glasses. Phys Chem Glasses. 1988;29:49–53.

    CAS  Google Scholar 

  15. Brow RK, Kirkpatrick RJ, Turner GL. Local structure of xAl2O3·(1−x) NaPO3 glasses: an NMR and XPS study. J Am Ceram Soc. 1990;73:2293–300.

    Article  CAS  Google Scholar 

  16. Donald IW. Preparation, properties and chemistry of glass- and glass-ceramic-to-metal seals and coatings. J Mater Sci. 1993;28:2841–86.

    Article  CAS  Google Scholar 

  17. Sinouh H, Bih L, El Bouari A, Baudin T, Berthet P, Haumont R, Solas D. Glass and glass-ceramics along the SrTiO3–NaPO3 line. MATEC Web Conf. 2013;5:1–3.

    Article  Google Scholar 

  18. Yamane M, Mackenzie JD. Vicker’s hardness of glass. J Non-Cryst Solids. 1974;15:153–64.

    Article  CAS  Google Scholar 

  19. Sinouh H, Bih L, El Bouari A, Azrour M, Manoun B, Lazor P. BaO effect on the thermal properties of the phosphate glasses inside the Na2O–SrO–TiO2–B2O3–P2O5 system. J Phys Chem Solids. 2014;405:33–8.

    CAS  Google Scholar 

  20. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  21. Yinnon H, Uhlmann DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non-Cryst Solids. 1983;54:253–75.

    Article  CAS  Google Scholar 

  22. Aly KA, Saddeek YB, Dahshan A. Structure and crystallization kinetics of manganese lead tellurite glasses. J Therm Anal Calorim. 2015;119:1215–24.

    Article  CAS  Google Scholar 

  23. Ivanović VDZ, Tosić MB, Grujić SR, Matijasević SD, Stojanović JN, Nikolić JD, Smiljanic SV. DTA study of the crystallization of Li2O–Nb2O5–SiO2–TiO2 glass. J Therm Anal Calorim. 2015;119:1653–61.

    Article  Google Scholar 

  24. Arya SK. Singh K, Thermal and kinetic parameters of 30Li2O–55B2O3–5ZnO–xTiO2–(10-x)V2O5 glasses (0 ≤ x ≤ 10). J Therm Anal Calorim. 2015;122:189–95.

    Article  CAS  Google Scholar 

  25. Zemenová P, Kral R, Nitsch K, Knizek K, Cihlar A, Bystrický A. Characterization and crystallization kinetics of Er-doped Li2O–Y2O3–P2O5 glass studied by non-isothermal DSC analysis. J Therm Anal Calorim. 2016;125:1431–8.

    Article  Google Scholar 

  26. Augis JA, Bennett JE. Calculation of Avrami parameters for heterogeneous solid state reactions using a Modified Kissinger’s method. J Therm Anal Calorim. 1978;13:283–92.

    Article  CAS  Google Scholar 

  27. Avrami M. Kinetics of phase change. I General theory. J Phys Chem. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  28. Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Phys Chem. 1940;8:212–24.

    Article  CAS  Google Scholar 

  29. Avrami M. Kinetics of phase change. III. Granulation, phase change, and microstructure. J Phys Chem. 1941;9:177–84.

    Article  CAS  Google Scholar 

  30. Tosic MB, Dimitrijevic RZ, Mitrovic MM. The crystallization of calcium phosphate glass with the ratio [CaO]/[P2O5]<1. J Mater Sci. 2003;38:1983–94.

    Article  CAS  Google Scholar 

  31. Higazy AA, Bridge B. Infrared spectra of the vitreous system Co3O4–P2O5 and their interpretation. J Mater Sci. 1985;20:2345–58.

    Article  CAS  Google Scholar 

  32. Selvaraj LJ, Rao KJ. Role of lead in lead phosphomolybdate glasses and a model of structural units. J Non-Cyst Solids. 1988;104:300.

    Article  CAS  Google Scholar 

  33. Efimov AM. IR fundamental spectra and structure of pyrophosphate glasses along the 2ZnO·P2O5–2Me2O·P2O5 join (Me being Na and Li). J Non-Cryst Solids. 1997;209:209–26.

    Article  CAS  Google Scholar 

  34. Yung SW, Shih PY, Chin TS. Crystallization kinetics of a low melting PbO–ZnO–P2O5 glass. Mater Chem Phys. 1998;57:111–6.

    Article  CAS  Google Scholar 

  35. Shih PY, Yung SW, Chin TS. FTIR and XPS studies of P2O5–Na2O–CuO glasses. J Non-Cryst Solids. 1999;244:211–22.

    Article  CAS  Google Scholar 

  36. Hudgens JJ, Martin SW. Glass transition and infrared spectra of low-alkali, anhydrous lithium phosphate glasses. J Am Ceram Soc. 1993;76:1691–6.

    Article  CAS  Google Scholar 

  37. Meyer K. Structural characterisation of binary magnesium ultraphosphate glasses by vibrational spectroscopy. Phys Chem Glasses. 2001;42:79–87.

    CAS  Google Scholar 

  38. Metwalli E, Brow RK. Modifier effects on the properties and structures of aluminophosphate glasses. J Non-Cryst Solids. 2001;289:113–22.

    Article  CAS  Google Scholar 

  39. Kamitsos EI, Kapoutsis JA, Chryssikos GD, Hutchinson JM, Pappin AJ, Ingram MD, Duffy JA. Infrared study of AgI containing superionic glasses. Phys Chem Glasses. 1995;36:141–9.

    CAS  Google Scholar 

  40. Laudisio D, Catauro M, Aronne A, Pernice P. Glass transition temperature and devitrification behaviour of lithium-titanium-germanate glasses. Thermochim Acta. 1997;294:173–8.

    Article  CAS  Google Scholar 

  41. Wu HF, Lin CC, Shen P. Structure and dissolution of CaO–ZrO2–TiO2–Al2O3–B2O3–SiO2 glass (II). J Non-Cryst Solids. 1997;209:76–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Swedish Research Council for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bih.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinouh, H., Bih, L., Manoun, B. et al. Thermal analysis and crystallization of the glasses inside the BaO–SrO–TiO2–NaPO3 system. J Therm Anal Calorim 128, 883–890 (2017). https://doi.org/10.1007/s10973-016-5986-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5986-5

Keywords

Navigation