Skip to main content
Log in

The role of crystallization on microstructural and electrical studies of lithium germanium phosphate glass-ceramic electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The glass-ceramic samples with the general formula: (100 − x) [0.4Li2O-0.1GeO2-0.6P2O5] + x 40-h ball-milled Al2O3 (where x = 0, 2, 4, 6, 8, 10, and 12 mol%) were synthesized by high-energy ball milling technique. X-ray diffraction (XRD) analysis revealed that the phases such as LiGe2(PO4)3, Li4P2O7, GeO2, and AlPO4 were identified from major diffraction peaks of LGPA samples. The intensity and broadening of XRD peaks of LGPA glass-ceramic samples displayed that the LGPA10 glass-ceramic possesses major crystalline phases namely sodium super ionic conductor (NASICON)-type phases of LiGe2(PO4)3 and Li4P2O7. Scanning electron micrograph (SEM) pictures further confirmed that the sample LGPA10 has the presence of particles of varied sizes (20–30 nm) and also large clusters of less than 60 nm dispersed uniformly in a continuous glass matrix. The slight difference in the Z″ and M″ peaks for the LGPA samples suggests the presence of possibly more than one mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Fanelli E, Pernice P, Xiao M, Aronne A, Sigaev VN (2011) J Mater Sci Technol 27(2):189

    Article  CAS  Google Scholar 

  2. El-Desoky MM (2010) Mater Chem Phys 119:389

    Article  CAS  Google Scholar 

  3. Panmand RP, Kawade UV, Kulkarni MV, Apte SK, Kale BB, Gosavi SW (2010) Mater Sci Eng B 168:161

    Article  CAS  Google Scholar 

  4. Kim Y, Hwang H, Lawler K, Martin SW, Cho J (2008) Electrochim Acta 53:5058–5064

    Article  CAS  Google Scholar 

  5. AL-Hartomy OA, Al-Ghamdi AA, EL-Tantawy F, El-Desoky MM (2013) J Mater Sci 48:3067

    Article  CAS  Google Scholar 

  6. Hayashi A, Miami K, Ujiie S, Tatsumisago M (2010) J Non-Cryst Solids 356:2670

    Article  CAS  Google Scholar 

  7. Reddy CKK, Balaji Rao R, Koti Reddy CV, Rao KVB (2012) J Phase Transit 85:218

    Article  CAS  Google Scholar 

  8. Aono H, Sugimoto E, Sadaoka Y (1990) J Electrochem Soc 137:1023

    Article  CAS  Google Scholar 

  9. Muzino F, Hayashi A, Tadanaga K, Tatsumisago M (2005) Electrochem Solid-State Lett 8:A603

    Article  Google Scholar 

  10. Maier J (1995) Prog Solid State Chem 23:171

    Article  CAS  Google Scholar 

  11. Muzino F, Hayashi A, Tadanaga K, Tatsumisago M (2005) Electrochem Advis Mater 17:918

    Google Scholar 

  12. Henderson GS, Amos RT (2003) J Non-Cryst Solids 328:1

    Article  CAS  Google Scholar 

  13. Reddy Ch KK, Balaji Rao R, Reddy MVR (2013) J Phys Chem Solids 74:1093

    Article  Google Scholar 

  14. Foltyh MF, Wasiucionek M, Nowinski JL (2005) Solid State Ion 176:2137

    Article  Google Scholar 

  15. Gedam RS, Deshpande VK (2006) Solid State Ion 177:2589

    Article  CAS  Google Scholar 

  16. Hang HEKW Y –, Cheng- Kui ZU, Yong-Hua LIU, Hui-Feng ZHAO, Bin HAN, Jiang CHEN (2011) Chinese J Inorg Chem 27(12):2484

    Google Scholar 

  17. Muthupari S, Raghavan SL, Raghavan SL, Rao KJ (1996) J Phys Chem 100:4243

    Article  CAS  Google Scholar 

  18. Xiaoxiong XU, Zhaoyin WEN, Xuelin YANG, Jingchao Z, Zhonghua G (2006) Solid State Ionics 177:2611

    Article  Google Scholar 

  19. Garbarczyk JE, Jozwiak P, Wasiucionek, Nowinski WJL (2006) Solid State Ionics 177:2585

    Article  CAS  Google Scholar 

  20. Heitjansa P, Tobschallb E, Wilkening M (2008) Eur Phys J Special Topics 161:97

    Article  Google Scholar 

  21. Gandhi Y, Rao MVR, Rao CS, Srikumar T, Kityk IV, Veeraiah N (2010) J Appl Phys 108:0230102

    Article  Google Scholar 

  22. Nobre MAL, Lafendri S (2001) J Phys Chem Solids 62:1999

    Article  CAS  Google Scholar 

  23. Elliot SR, Owens AP (1994) Solid State Ionics 70:27

    Article  Google Scholar 

  24. Ghosh A, Pan A (2000) Phys Rev Lett 84:2188

    Article  CAS  Google Scholar 

  25. Deb B, Ghosh A (2011) J Phys Chem C 115:14141

    Article  CAS  Google Scholar 

  26. Verhoef AH, Denhartog HW (1994) Solid State Ion 68:305

    Article  CAS  Google Scholar 

  27. Gerhardt RA (1994) J Phys Chem Solids 55:1491

    Article  CAS  Google Scholar 

  28. Bahgat AA, Abou-Zeid YM (2001) Phys Chem Glasses 42:01

    Google Scholar 

  29. Chowdari BVR, Krishnan RG, Ghosh SH, Tan KL (1988) J Mater Sci 23:1248

    Article  CAS  Google Scholar 

  30. Moynihan CT, Boesch LP, Laberage NL (1973) Phys Chem Glasses 14:122

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged Prof. B.S. Murty, Department of MME, IITM, India, for kindly extending the facility to acquire the XRD spectra and SEM pictures and also for his guidance in the interpretation of the XRD and SEM results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Balaji Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, C.K.K., Rao, R.B. & Reddy, C.G. The role of crystallization on microstructural and electrical studies of lithium germanium phosphate glass-ceramic electrolytes. Ionics 21, 967–979 (2015). https://doi.org/10.1007/s11581-014-1265-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1265-2

Keywords

Navigation