Skip to main content
Log in

Non-isothermal crystallization kinetics of some basaltic glass-ceramics containing CaF2 as nucleation agent

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallization mechanism of the glass-ceramics obtained from Romanian (Şanoviţa) basalt in the presence of 3 and 5% CaF2 as nucleation agent has been investigated under non-isothermal conditions using DTA technique. The activation energies of the crystallization processes were calculated using the Kissinger-Akahira-Sunose, Ozawa-Flynn-Wall, Starink and Tang isoconversional methods. The monotonous decreases in the activation energy (E a) with the crystallized fraction (α) confirms the complex mechanism of the glass-ceramics crystallization process. It has been proved that the Johnson-Mehl-Avrami model cannot be applied for the studied glass-ceramics crystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pavluşkin NM. Osnovî tehnologii sitalo. Moskva: Stroizdat; 1977.

    Google Scholar 

  2. Kovacs G, PhD Thesis, Univ. Politehnica, Timişoara, 1997.

  3. Torres FJ, Alarcon J. Pyroxene-based glass-ceramics as glazes for floor tiles. J Eur Ceram Soc. 2005;25:349–55.

    Article  CAS  Google Scholar 

  4. Rincon JMa, Caceres J, Gonzalez-Oliver CJ, Russo DO, Petkova A, Hristov H. Thermal and sintering behaviour of basalt glasses and natural basalt powders. J Therm Anal Calorim. 1999;56:931–8.

    Article  CAS  Google Scholar 

  5. Karamanov A, Ergul S, Akyildiz M, Pelino M. Sinter-crystallization of a glass obtained from basaltic tuffs. J Non-Cryst Solids. 2008;354:290–5.

    Article  CAS  Google Scholar 

  6. Goel A, Shaaban ER, Melo FCL, Ribeiro MJ, Ferreira JMF. Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass. J Non-Cryst Solids. 2007;353:2383–91.

    Article  CAS  Google Scholar 

  7. Kovacs G, Lazău I, Menessy I, Kovacs K. Glass-ceramics from modified Şanoviţa(Timiş) basalt. Key Eng Mater. 1997;132–136:2135–8.

    Article  Google Scholar 

  8. Junina LA, Kuzmenkov MI, Iaglov VN. “Piroxenovîie sitallî”, Izd. B. G. U. Lenina, Minsk, 1974.

  9. Samia NS, Saad MS, Hussein D. The effect of nucleation catalysts on crystallization characteristics of aluminosilicate glasses. Ceramics-Silikáty. 2002;46(1):15–23.

    Google Scholar 

  10. Păcurariu C, Liţă M, Lazău I, Tiţa D, Kovacs G. Kinetic study of the crystallization processes of some glass ceramics based on Basalt, via thermal analysis. J Thermal Anal Calorim. 2003;72:811–21.

    Article  Google Scholar 

  11. Păcurariu C, Tiţa D, Lazău RI, Kovacs G, Lazău I. Kinetics of crystallization processes in some glass ceramic products. Influence of nucleation agents. J Therm Anal Calorim. 2003;72:823–30.

    Article  Google Scholar 

  12. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics. II. Nonisothermal kinetic studies. Thermochim Acta. 2005;436:101–12.

    Article  CAS  Google Scholar 

  13. Starink MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;288:97–104.

    Article  CAS  Google Scholar 

  14. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  15. Sbirrazzuoli N, Vincent L, Bouillard J, Elegant L. Isothermal and non-isothermal kinetics when mechanistic information available. J Therm Anal Calorim. 1999;56:783–92.

    Article  CAS  Google Scholar 

  16. Cai JM, Liu RH. Precision of integral methods for the determination of the kinetic parameters. Use in the kinetic analysis of solid-state reactions. J Therm Anal Calorim. 2008;91(1):275–8.

    Article  CAS  Google Scholar 

  17. Starink MJ. Activation energy determination for linear heating experiments:deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci. 2007;42:483–9.

    Article  CAS  Google Scholar 

  18. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2(3):301–24.

    Article  CAS  Google Scholar 

  19. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  20. Simon P. Isoconversional methods. Fundamentals, meaning and application. J Therm Anal Calorim. 2004;76:123–32.

    Article  CAS  Google Scholar 

  21. Ozawa T. Kinetics of growth from pre-existing surface nuclei. J Therm Anal Calorim. 2005;82:687–90.

    Article  CAS  Google Scholar 

  22. Chen HX, Liu NA. Approximations for the temperature integral. Their underlying relationship. J Therm Anal Calorim. 2008;92(2):573–8.

    Article  CAS  Google Scholar 

  23. Doyle CD. Series approximations to the equations of thermogravimetric data. Nature. 1965;207:290–1.

    Article  CAS  Google Scholar 

  24. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  25. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  26. Wanjun T, Yuwen L, Hen Z, Cunxin W. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    Article  Google Scholar 

  27. Wanjun T, Donghua C. An integral method to determine variation in activation energy with extent of conversion. Thermochim Acta. 2005;433:72–6.

    Article  Google Scholar 

  28. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. J Chem Phys. 1941;9:177–85.

    Article  CAS  Google Scholar 

  29. Malek J. Crystallyzation kinetics by thermal analysis. J Therm Anal Calorim. 1999;56:763–9.

    Article  CAS  Google Scholar 

  30. Păcurariu C, Lazău RI, Lazău I, Tiţa D. Kinetics of non-isothermal crystallization of some glass-ceramics based on basalt. J Therm Anal Calorim. 2007;88(3):647–52.

    Article  Google Scholar 

  31. Vlase T, Păcurariu C, Lazău RI, Lazău I. Kinetic studies of the crystallization process of one glass-ceramic based on basalt. J Therm Anal Calorim. 2007;88(3):625–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Păcurariu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Păcurariu, C., Lazău, R.I., Lazău, I. et al. Non-isothermal crystallization kinetics of some basaltic glass-ceramics containing CaF2 as nucleation agent. J Therm Anal Calorim 97, 507–513 (2009). https://doi.org/10.1007/s10973-009-0369-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0369-9

Keywords

Navigation