Skip to main content
Log in

Optical spectroscopy methods for the characterization of sol–gel materials

  • Invited Review: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper reviews the main techniques of optical spectroscopy used for the characterization of sol-gel materials in different forms, including a brief description of instrumentation, followed by a series of selected examples from the literature that illustrate the main methodologies and results which can be obtained and including the main advantages and disadvantages of the different approaches adopted. The review includes separate sections on UV/Vis/NIR spectroscopy, spectroscopic ellipsometry, M-line spectroscopy, infrared and Raman spectroscopies, and photoluminescence spectroscopy.

Highlights

  • This paper reviews the main techniques of optical spectroscopy for the characterization of sol–gel materials.

  • UV/Vis/NIR, M-line, Infrared, Raman and Photoluminescence Spectroscopy are highlighted, as well as Spectroscopic Ellipsometry.

  • Instrumentation, advantages and disadvantages, and selected examples are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Almeida RM, Santos LF (2015) Raman spectroscopy of glasses. In: Affatigato M (ed.) Mod. Glas. Charact. John Wiley & Sons, Inc, Hoboken, NJ, pp 74–106. https://doi.org/10.1002/9781119051862.ch3

  2. Almeida RM, Xu J (2015) Characterization of sol-gel Materials by optical spectroscopy methods. In: Levy D, Zayat M (Eds.) Sol-Gel Handbook Wiley-VCH Verlag, Weinhein, Germany, pp 713–744. https://doi.org/10.1002/9783527670819.ch22

  3. Almeida RM, Marques AC (2018) Characterization of sol-gel materials by infrared spectroscopy. In: Klein L, Aparicio M, Jitianu A (Eds.) Handbook of sol-gel science and technology Springer, Cham, pp 1121–1151. https://doi.org/10.1007/978-3-319-32101-1_33

  4. Schoonheydt RA (2010) UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts. Chem Soc Rev 39:5051–5066. https://doi.org/10.1039/c0cs00080a

    Article  CAS  Google Scholar 

  5. Marques AC, Almeida RM (2007) Er photoluminescence enhancement in Ag-doped sol-gel planar waveguides. J Non Cryst Solids 353:2613–2618. https://doi.org/10.1016/j.jnoncrysol.2007.05.010

    Article  CAS  Google Scholar 

  6. Arnold GW, Borders JA (1977) Aggregation and migration of ion-implanted silver in lithia-alumina-silica glass. J Appl Phys 48:1488. https://doi.org/10.1063/1.323867

    Article  CAS  Google Scholar 

  7. Arnold GW (1975) Near-surface nucleation and crystallization of an ion-implanted lithia-alumina-silica glass. J Appl Phys 46:4466. https://doi.org/10.1063/1.321422

    Article  CAS  Google Scholar 

  8. Almeida RM, Marques AC, Ferrari M (2003) Optical nanocomposite planar waveguides doped with rare-earth and noble metal elements. J Sol-Gel Sci Technol 26:891–896. https://doi.org/10.1023/A:1020776405909

    Article  CAS  Google Scholar 

  9. Khan MF, Ansari AH, Hameedullah M, Ahmad E, Husain FM, Zia Q, Baig U, Zaheer MR, Alam MM, Khan AM, Alothman ZA, Ahmad I, Ashraf GM, Aliev G (2016) Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-Antibiotics. Sci Rep. 6:27689. https://doi.org/10.1038/srep27689

    Article  CAS  Google Scholar 

  10. Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep. 4:4596. https://doi.org/10.1038/srep04596

    Article  CAS  Google Scholar 

  11. Crane CC, Wang F, Li J, Tao J, Zhu Y, Chen J (2017) Synthesis of copper-silica core-shell nanostructures with sharp and stable localized surface plasmon resonance. J Phys Chem C 121:5684–5692. https://doi.org/10.1021/acs.jpcc.6b11891

    Article  CAS  Google Scholar 

  12. Staniuk M, Rechberger F, Tervoort E, Niederberger M (2020) Adapting the concepts of nonaqueous sol–gel chemistry to metals: synthesis and formation mechanism of palladium and palladium–copper nanoparticles in benzyl alcohol. J Sol-Gel Sci Technol 95:573–586. https://doi.org/10.1007/s10971-020-05278-z

    Article  CAS  Google Scholar 

  13. Okitsu K, Bandow H, Maeda Y, Nagata Y (1996) Sonochemical preparation of ultrafine palladium particles. Chem Mater 8:315. https://doi.org/10.1021/cm950285s

    Article  CAS  Google Scholar 

  14. Poyraz AS, Kuo CH, Biswas S, King’Ondu CK, Suib SL (2013) A general approach to crystalline and monomodal pore size mesoporous materials. Nat Commun 4:2952. https://doi.org/10.1038/ncomms3952

    Article  CAS  Google Scholar 

  15. Bogachev YV, Chernenco JS, Gareev KG, Kononova IE, Matyushkin LB, Moshnikov VA, Nalimova SS (2014) The Study of Aggregation Processes in Colloidal Solutions of Magnetite-Silica Nanoparticles by NMR Relaxometry, AFM, and UV-Vis-Spectroscopy. Appl Magn Reson 45:329–337. https://doi.org/10.1007/s00723-014-0525-7

    Article  CAS  Google Scholar 

  16. Shaw DJ (2013) Introduction to colloid and surface chemistry: Fourth Edition, Butterworth-Heinemann. https://doi.org/10.1016/C2009-0-24070-0

  17. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239. https://doi.org/10.1021/jp9535506

    Article  CAS  Google Scholar 

  18. Deshmukh R, Niederberger M (2017) Mechanistic aspects in the formation, growth and surface functionalization of metal oxide nanoparticles in organic solvents. Chem - A Eur J 23:8542–8570. https://doi.org/10.1002/chem.201605957

    Article  CAS  Google Scholar 

  19. Lizandara-Pueyo C, Van Den Berg MWE, De Toni A, Goes T, Polarz S (2008) Nucleation and growth of ZnO in organic solvents—an in situ study. J Am Chem Soc 130:16601–16610. https://doi.org/10.1021/ja804071h

    Article  CAS  Google Scholar 

  20. Briois V, Giorgetti C, Baudelet F, Blanchandin S, Tokumoto MS, Pulcinelli SH, Santilli CV (2007) Dynamical study of ZnO nanocrystal and Zn-HDS layered basic zinc acetate formation from sol-gel route. J Phys Chem C 111:3253–3258. https://doi.org/10.1021/jp0662909

    Article  CAS  Google Scholar 

  21. Ludi B, Niederberger M (2013) Zinc oxide nanoparticles: chemical mechanisms and classical and non-classical crystallization. Dalt Trans 42:12554–12568. https://doi.org/10.1039/c3dt50610j

    Article  CAS  Google Scholar 

  22. Ansari AA, Adil SF, Alam M, Ahmad N, Assal ME, Labis JP, Alwarthan A (2020) Catalytic performance of the Ce-doped LaCoO3 perovskite nanoparticles. Sci Rep. 10:15012. https://doi.org/10.1038/s41598-020-71869-z

    Article  CAS  Google Scholar 

  23. Thirumalairajan S, Girija K, Hebalkar NY, Mangalaraj D, Viswanathan C, Ponpandian N (2013) Shape evolution of perovskite LaFeO3 nanostructures: a systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities. RSC Adv 3:7549–7561. https://doi.org/10.1039/c3ra00006k

    Article  CAS  Google Scholar 

  24. Kadari A, Mahi K, Mostefa R, Badaoui M, Mameche A, Kadri D (2016) Optical and structural properties of Mn doped CaSO4 powders synthesized by sol-gel process. J Alloy Compd 688:32–36. https://doi.org/10.1016/j.jallcom.2016.07.040

    Article  CAS  Google Scholar 

  25. Manickam K, Muthusamy V, Manickam S, Senthil TS, Periyasamy G, Shanmugam S (2019) Effect of annealing temperature on structural, morphological and optical properties of nanocrystalline TiO2 thin films synthesized by sol-gel dip coating method. Mater Today Proc 23:68–72. https://doi.org/10.1016/j.matpr.2019.06.651

    Article  CAS  Google Scholar 

  26. Xu WX, Zhu S, Fu XC (1998) The growth of TiO2-x film and the quantum size effect studied by UV-vis spectroscopy, SEM, TEM and ab initio calculation. J Phys Chem Solids 59:1647–1658. https://doi.org/10.1016/s0022-3697(97)00216-3

    Article  Google Scholar 

  27. Xu J, Almeida RM (2000) Preparation and characterization of germanium sulfide based sol-gel planar waveguides. J Sol-Gel Sci Technol 19:243–248. https://doi.org/10.1023/A:1008796523985

    Article  CAS  Google Scholar 

  28. Donatti DA, Ibañez Ruiz A, De Moraes FG, Vollet DR (2003) UV-visible absorption characteristics of TEOS-derived and Cr-doped Silica sonogels aged in different pH solutions and heat treated up to 600 °C. J Sol-Gel Sci Technol 28:31–35. https://doi.org/10.1023/A:1025676817852

    Article  CAS  Google Scholar 

  29. Ye T, Li S, Wu X, Xu M, Wei X, Wang K, Bao H, Wang J, Chen J (2013) Sol-gel preparation of efficient red phosphor Mg2TiO4:Mn4+ and XAFS investigation on the substitution of Mn4+ for Ti4+. J Mater Chem C 1:4327–4333. https://doi.org/10.1039/c3tc30553h

    Article  CAS  Google Scholar 

  30. Sun X, Lin J (2009) Synergetic effects of thermal and photo-catalysis in purification of dye water over SrTi1-xMnxO3 solid solutions. J Phys Chem C 113:4970–4975. https://doi.org/10.1021/jp810227y

    Article  CAS  Google Scholar 

  31. Somvanshi SB, Jadhav SA, Khedkar MV, Kharat PB, More SD, Jadhav KM (2020) Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd3+) doped mixed Zn–Mg nano-spinel ferrites. Ceram Int 46:13170–13179. https://doi.org/10.1016/j.ceramint.2020.02.091

    Article  CAS  Google Scholar 

  32. Almeida RM, Portal S (2003) Photonic band gap structures by sol-gel processing. Curr Opin Solid State Mater Sci 7:151–157. https://doi.org/10.1016/S1359-0286(03)00045-7

    Article  CAS  Google Scholar 

  33. Almeida RM, Rodrigues AS (2003) Photonic bandgap materials and structures by sol-gel processing. J Non Cryst Solids 326– 327:405–409. https://doi.org/10.1016/S0022-3093(03)00447-2

    Article  CAS  Google Scholar 

  34. Gondek E, Karasiński P (2013) One-dimensional photonic crystals as selective back reflectors. Opt Laser Technol 48:438–446. https://doi.org/10.1016/j.optlastec.2012.11.012

    Article  CAS  Google Scholar 

  35. Barton I, Matejec V, Mrazek J, Podrazky O, Matousek J (2017) Preparation of Bragg mirrors on silica optical fibers and inner walls of silica capillaries by employing the sol–gel method, and titanium and silicon alkoxides. J Sol-Gel Sci Technol 81:867–879. https://doi.org/10.1007/s10971-016-4222-x

    Article  CAS  Google Scholar 

  36. Almeida RM, Marques AC (2009) Rare earth-doped photonic crystals via sol–gel. J Mater Sci Mater Electron 20:307–311. https://doi.org/10.1007/s10854-008-9596-2

    Article  CAS  Google Scholar 

  37. Almeida RM, Marques AC, Chiasera A, Chiappini A, Ferrari M (2007) Rare-earth doped photonic crystal microcavities prepared by sol-gel. J Non Cryst Solids 353:490–493. https://doi.org/10.1016/j.jnoncrysol.2006.10.015

    Article  CAS  Google Scholar 

  38. Almeida RM, Marques AC (2006) Rare-earth photoluminescence in sol-gel derived confined glass structures. J Non Cryst Solids 352:475–482. https://doi.org/10.1016/j.jnoncrysol.2005.11.059

    Article  CAS  Google Scholar 

  39. Zampedri L, Tosello C, Portales H, Montagna M, Mattarelli M, Chiappini A, Righini GC, Pelli S, Conti GN, Martino M, Portal S, Marques AC, Almeida RM, Jestin Y, Ferrari M, Chiasera A (2005) Spectroscopic assessment of rare-earth activated planar waveguides and microcavities. Appl Surf Sci 248:3–7. https://doi.org/10.1016/j.apsusc.2005.03.022

    Article  CAS  Google Scholar 

  40. Li Y, Almeida RM (2010) Photoluminescence from a Tb-doped photonic crystal microcavity for white light generation. J Phys D Appl Phys 43:455101. https://doi.org/10.1088/0022-3727/43/45/455101

    Article  CAS  Google Scholar 

  41. Inouye H, Arakawa M, Ye JY, Hattori T, Nakatsuka H, Hirao K (2002) Optical properties of a total-reflection-type one-dimensional photonic crystal. IEEE J Quantum Electron 38:867–871. https://doi.org/10.1109/JQE.2002.1017599

    Article  CAS  Google Scholar 

  42. Song Q, Liu L, Ling T, Xu L, Wang W (2003) Narrow-band polarized light emission from organic microcavity fabricated by sol-gel technique. Appl Phys Lett 82:2939–2941. https://doi.org/10.1063/1.1571955

    Article  CAS  Google Scholar 

  43. Rojas-Hernandez R, Santos LF, Almeida RM (2020) Up-conversion enhancement in Er3+/Yb3+ doped microcavity based on alternating aluminosilicate glass and titania sol-gel layers. Ceram Int 46:26273–26281. https://doi.org/10.1016/j.ceramint.2019.12.248

    Article  CAS  Google Scholar 

  44. Rojas-Hernandez RE, Barradas NP, Alves E, Santos LF, Almeida RM (2018) Up-conversion emission of aluminosilicate and titania films doped with Er3+/Yb3+ by ion implantation and sol-gel solution doping. Surf Coat Technol 355:162–168. https://doi.org/10.1016/j.surfcoat.2018.01.056

    Article  CAS  Google Scholar 

  45. Almeida RM, Sousa N, Rojas-Hernandez R, Santos LF (2020) Frequency conversion in lanthanide-doped sol-gel derived materials for energy applications. J Sol-Gel Sci Technol 95:520–529. https://doi.org/10.1007/s10971-020-05289-w

    Article  CAS  Google Scholar 

  46. Rojas-Hernandez RE, Santos LF, Almeida RM (2018) Photonic crystal assisted up-converter based on Tb3+/Yb3+-doped aluminosilicate glass. Opt Mater 83:61–67. https://doi.org/10.1016/j.optmat.2018.05.054

    Article  CAS  Google Scholar 

  47. Almeida RM, Gonçalves MC, Portal S (2004) Sol-gel photonic bandgap materials and structures. J Non Cryst Solids 345–346:562–569. https://doi.org/10.1016/j.jnoncrysol.2004.08.085

    Article  CAS  Google Scholar 

  48. Gonçalves MC, Brás J, Almeida RM (2007) Process optimization of sol-gel derived colloidal photonic crystals. J Sol-Gel Sci Technol 42:135–143. https://doi.org/10.1007/s10971-007-1551-9

    Article  CAS  Google Scholar 

  49. Clara Gonçalves M, Fortes LM, Almeida RM, Chiasera A, Chiappini A, Ferrari M (2009) 3-D rare earth-doped colloidal photonic crystals. Opt Mater 31:1315–1318. https://doi.org/10.1016/j.optmat.2008.10.030

    Article  CAS  Google Scholar 

  50. Fortes LM, Gonçalves MC, Almeida RM (2009) Processing optimization and optical properties of 3-D photonic crystals. J Non Cryst Solids 355:1189–1192. https://doi.org/10.1016/j.jnoncrysol.2009.01.049

    Article  CAS  Google Scholar 

  51. Chiappini A, Armellini C, Chiasera A, Ferrari M, Fortes L, Clara Gonçalves M, Guider R, Jestin Y, Retoux R, Nunzi Conti G, Pelli S, Almeida RM, Righini GC (2009) An alternative method to obtain direct opal photonic crystal structures. J Non Cryst Solids 355:1167–1170. https://doi.org/10.1016/j.jnoncrysol.2009.01.054

    Article  CAS  Google Scholar 

  52. Hsiao SY, Wong DSH, Lu SY (2005) Evaporation-assisted formation of three-dimensional photonic crystals. J Am Ceram Soc 88:974–976. https://doi.org/10.1111/j.1551-2916.2005.00153.x

    Article  CAS  Google Scholar 

  53. Míguez H, López C, Meseguer F, Blanco A, Vázquez L, Mayoral R, Ocaña M, Fornés V, Mifsud A (1997) Photonic crystal properties of packed submicrometric SiO2 spheres. Appl Phys Lett 71:1148–1150. https://doi.org/10.1063/1.119849

    Article  Google Scholar 

  54. McComb DW, Treble BM, Smith CJ, De La Rue RM, Johnson NP (2001) Synthesis and characterisation of photonic crystals. J Mater Chem 11:142–148. https://doi.org/10.1039/b003191g

    Article  CAS  Google Scholar 

  55. Chiappini A, Armellini C, Chiasera A, Ferrari M, Jestin Y, Mattarelli M, Montagna M, Moser E, Nunzi Conti G, Pelli S, Righini GC, Clara Gonçalves M, Almeida RM (2007) Design of photonic structures by sol-gel-derived silica nanospheres. J Non Cryst Solids 353:674–678. https://doi.org/10.1016/j.jnoncrysol.2006.10.034

    Article  CAS  Google Scholar 

  56. Almeida RM, Fortes LM, Gonçalves CC (2011) Sol-gel derived photonic bandgap coatings for solar control. Opt Mater 33:1867–1871. https://doi.org/10.1016/j.optmat.2011.03.010

    Article  CAS  Google Scholar 

  57. Li YG, Almeida RM (2010) Simultaneous broadening and enhancement of the 1.5 μm photoluminescence peak of Er3+ ions embedded in a 1-D photonic crystal microcavity. Appl Phys B Lasers Opt 98:809–814. https://doi.org/10.1007/s00340-009-3885-1

    Article  CAS  Google Scholar 

  58. Calabretta PJ, Chancellor MC, Torres C, Abel GR, Niehaus C, Birtwhistle NJ, Khouderchah NM, Zemede GH, Eggers DK (2012) Silica as a matrix for encapsulating proteins: surface effects on protein structure assessed by circular dichroism spectroscopy. J Funct Biomater 3:514–527. https://doi.org/10.3390/jfb3030514

    Article  CAS  Google Scholar 

  59. Shibayama N (2008) Circular dichroism study on the early folding events of β-lactoglobulin entrapped in wet silica gels. FEBS Lett 582:2668–2672. https://doi.org/10.1016/j.febslet.2008.06.047

    Article  CAS  Google Scholar 

  60. Le T, Chan S, Ebaid B, Sommerhalter M (2015) Silica sol-gel entrapment of the enzyme chloroperoxidase. J Nanotechnol 2015:10. https://doi.org/10.1155/2015/632076

    Article  CAS  Google Scholar 

  61. Menaa B, Menaa F, Aiolfi-Guimarãees C, Sharts O (2010) Silica-based nanoporous sol-gel glasses: from Bioencapsulation to protein folding studies. Int J Nanotechnol 7:1–45. https://doi.org/10.1504/IJNT.2010.029546

    Article  CAS  Google Scholar 

  62. Fireman-Shoresh S, Marx S, Avnir D (2007) Induction and detection of chirality in doped sol-gel materials: NMR and circular dichroism studies. J Mater Chem 17:536–544. https://doi.org/10.1039/b612822j

    Article  CAS  Google Scholar 

  63. Harada T, Yanagita H, Ryu N, Okazaki Y, Kuwahara Y, Takafuji M, Nagaoka S, Ihara H, Oda R (2021) Lanthanide ion-doped silica nanohelix: a helical inorganic network acts as a chiral source for metal ions. Chem Commun 57:4392–4395. https://doi.org/10.1039/d1cc01112j

    Article  CAS  Google Scholar 

  64. Omar S, Abu-Reziq R (2020) Magnetically separable chiral periodic mesoporous organosilica nanoparticles. Appl Sci 10:5960. https://doi.org/10.3390/app10175960

    Article  CAS  Google Scholar 

  65. Guy S, Stoita-Crisan A, Bensalah-Ledoux A, Vautey T, Guy L (2011) Sol-gel chirowaveguides investigated via MLine technique. Opt Mater 34:347–350. https://doi.org/10.1016/j.optmat.2011.05.015

    Article  CAS  Google Scholar 

  66. Secu CE, Polosan S, Secu M (2011) Magneto-optical investigations of rare earth doped sol-gel derived silicate xerogels. J Lumin 131:1747–1752. https://doi.org/10.1016/j.jlumin.2011.04.031

    Article  CAS  Google Scholar 

  67. Yeatman E (2018) Ellipsometry of sol-gel films, handbook of sol-gel science and technology. Springer, Cham, https://doi.org/10.1007/978-3-319-32101-1_47

  68. Löbmann P (2017) Characterization of sol–gel thin films by ellipsometric porosimetry. J Sol-Gel Sci Technol 84:2–15. https://doi.org/10.1007/s10971-017-4473-1

    Article  CAS  Google Scholar 

  69. Hilfiker JN, Bungay CL, Synowicki RA, Tiwald TE, Herzinger CM, Johs B, Pribil GK, Woollam JA (2003) Progress in spectroscopic ellipsometry: Applications from vacuum ultraviolet to infrared. J Vac Sci Technol A Vac, Surf, Film 21:1103–1108. https://doi.org/10.1116/1.1569928

    Article  CAS  Google Scholar 

  70. Ferrieu F (1989) Infrared spectroscopic ellipsometry using a Fourier transform infrared spectrometer: some applications in thin-film characterization. Rev Sci Instrum 60:3212–3216. https://doi.org/10.1063/1.1140554

    Article  CAS  Google Scholar 

  71. Ortolani M, Schade U (2010) Fourier-transform far-infrared spectroscopic ellipsometry for standoff material identification. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 623:791–793. https://doi.org/10.1016/j.nima.2010.02.079

    Article  CAS  Google Scholar 

  72. Flaherty T, O’Connor GM (2003) Application of spectral reflectivity to the measurement of thin-film thickness. Opto-Irel 2002 Opt Photonics Technol Appl 4876:976. https://doi.org/10.1117/12.464264

    Article  Google Scholar 

  73. Fujiwara H (2007) Spectroscopic ellipsometry: principles and applications, John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470060193

  74. Woollam JA, Snyder PG (1990) Fundamentals and applications of variable angle spectroscopic ellipsometry. Mater Sci Eng B 5:279–283. https://doi.org/10.1016/0921-5107(90)90069-N

    Article  Google Scholar 

  75. Schöche S, Ho P-H, Roberts JA, Yu SJ, Fan JA, Falk AL (2020) Mid-IR and UV-Vis-NIR Mueller matrix ellipsometry characterization of tunable hyperbolic metamaterials based on self-assembled carbon nanotubes. J Vac Sci Technol B 38:014015. https://doi.org/10.1116/1.5130888

    Article  CAS  Google Scholar 

  76. Laskarakis A, Logothetidis S, Pavlopoulou E, Gioti M (2004) Mueller matrix spectroscopic ellipsometry: Formulation and application. Thin Solid Films 455– 456:43–49. https://doi.org/10.1016/j.tsf.2003.11.197

    Article  CAS  Google Scholar 

  77. Garcia-Caurel DMAE, Ossikovski R, Foldyna M, Pierangelo A, Drévillon B (2013) Advanced Mueller ellipsometry instrumentation and data analysis, in: Ellipsometry at the nanoscale. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-33956-1_2

  78. Figus C, Quochi F, Artizzu F, Saba M, Marongiu D, Floris F et al. (2014) Thickness controlled sol-gel silica films for plasmonic bio-sensing devices. AIP Conf Proceedings 1624:43–48. https://doi.org/10.1063/1.4900455

    Article  CAS  Google Scholar 

  79. Guglielmi M, Martucci A, Almeida RM, Vasconcelos HC, Yeatman EM, Dawnay EJC, Fardad MA (1998) Spinning deposition of silica and silica-titania optical coatings: a round robin test. J Mater Res 13:731–738. https://doi.org/10.1557/JMR.1998.0092

    Article  CAS  Google Scholar 

  80. Ribeiro TV, Santos LF, Gonçalves MC, Almeida RM (2017) Heavily Yb-doped silicate glass thick films. J Sol-Gel Sci Technol 81:105–113. https://doi.org/10.1007/s10971-016-4071-7

    Article  CAS  Google Scholar 

  81. Crişan M, Brǎileanu A, Rǎileanu M, Zaharescu M, Crişan D, Drǎgan N, Anastasescu M, Ianculescu A, Niţoi I, Marinescu VE, Hodorogea SM (2008) Sol-gel S-doped TiO2 materials for environmental protection. J Non Cryst Solids 354:705–711. https://doi.org/10.1016/j.jnoncrysol.2007.07.083

    Article  CAS  Google Scholar 

  82. Mechiakh R, Ben Sedrine N, Chtourou R (2011) Sol-gel synthesis, characterization and optical properties of mercury-doped TiO2 thin films deposited on ITO glass substrates. Appl Surf Sci 257:9103–9109. https://doi.org/10.1016/j.apsusc.2011.05.107

    Article  CAS  Google Scholar 

  83. Ali D, Butt MZ, Muneer I, Farrukh MA, Aftab M, Saleem M, Bashir F, Khan AU (2019) Synthesis and characterization of sol-gel derived La and Sm doped ZnO thin films: a solar light photo catalyst for methylene blue. Thin Solid Films 679:86–98. https://doi.org/10.1016/j.tsf.2019.04.017

    Article  CAS  Google Scholar 

  84. Mahmoud WE, Al-Ghamdi AA, Al-Agel FA, Al-Arfaj E, Shokr FS, Al-Gahtany SA, Alshahrie A, Hafez M, Bronstein LM, Beall GW (2015) Structure and properties of the Mn doped CeO2 thin film grown on LaAlO3 (0 0 1) via a modified sol-gel spin-coating technique. J Alloy Compd 640:122–127. https://doi.org/10.1016/j.jallcom.2015.04.052

    Article  CAS  Google Scholar 

  85. Martins O, Xu J, Almeida RM (1999) Sol-gel processing of germanium sulfide based films. J Non Cryst Solids 257:25–30

    Article  Google Scholar 

  86. Ramirez-del-Solar M, Blanco E. Porous thin films from sol-gel, in: Submicron Porous Mater., Springer International Publishing, 2017

  87. Orignac X, Vasconcelos HC, Du XM, Almeida RM (1997) Influence of solvent concentration on the microstructure of SiO2-TiO2 sol-gel films. J Sol-Gel Sci Technol 8:243–248. https://doi.org/10.1007/BF02436847

    Article  CAS  Google Scholar 

  88. Bockmeyer M (2007) Structure and densification of thin films prepared from soluble precursor powders by sol-gel processing, Universität Würzburg, Fakultät für Chemie und Pharmazie

  89. Jiang HQ, Wei Q, Cao QX, Yao X (2008) Spectroscopic ellipsometry characterization of TiO2 thin films prepared by the sol-gel method. Ceram Int 34:1039–1042. https://doi.org/10.1016/j.ceramint.2007.09.101

    Article  CAS  Google Scholar 

  90. Castro Y, Durán A (2016) Ca doping of mesoporous TiO2 films for enhanced photocatalytic efficiency under solar irradiation. J Sol-Gel Sci Technol 78:482–491. https://doi.org/10.1007/s10971-016-3988-1

    Article  CAS  Google Scholar 

  91. Brigo L, Faustini M, Pistore A, Kang HK, Ferraris C, Schutzmann S, Brusatin G (2016) Porous inorganic thin films from bridged silsesquioxane sol–gel precursors. J Non Cryst Solids 432:399–405. https://doi.org/10.1016/j.jnoncrysol.2015.10.041

    Article  CAS  Google Scholar 

  92. Loizillon J, Putero M, Grosso D (2019) Tuning mesoporous silica film accessibility through controlled dissolution in NH4F: investigation of structural change by ellipsometry porosimetry and X-ray reflectivity. J Phys Chem C 123:30398–30406. https://doi.org/10.1021/acs.jpcc.9b09109

    Article  CAS  Google Scholar 

  93. Boudot M, Boissière C, Burov E, Gacoin T (2019) Engineering of silica thin-film nanoporosity via alkali-ion-assisted reconstruction. Chem Mater 31:2390–2400. https://doi.org/10.1021/acs.chemmater.8b04853

    Article  CAS  Google Scholar 

  94. Min Du X, Almeida RM (1995) Sintering kinetics of silica-titania sol-gel films on silicon wafers. J Mater Res 11:353–357. https://doi.org/10.1557/JMR.1996.0042

    Article  Google Scholar 

  95. Almeida RM, Vasconcelos HC, Ilharco LM (1994) Relationship between infrared absorption and porosity in silica-based sol-gel films. SPIE Sol–Gel Opt III 2288:678–687. https://doi.org/10.1117/12.189004

    Article  CAS  Google Scholar 

  96. Martin AJ, Green M (1990) Sol-gel nano-porous silica-titania thin films with liquid fill for optical interferometric sensors. Sol-Gel Opt III 1328:352–363

    Article  CAS  Google Scholar 

  97. Kasgoz A, Yoshimura K, Misono T, Abe Y (1994) Preparation and properties of SiO2-TiO2 thin films from silicic acid and titanium tetrachloride. J Sol-Gel Sci Technol 1:185–191

    Article  CAS  Google Scholar 

  98. Almeida RM (1999) Sol-gel planar waveguides for integrated optics. J Non Cryst Solids 259:176–181. https://doi.org/10.1016/S0022-3093(99)00527-X

    Article  CAS  Google Scholar 

  99. Seco AM, Gonçalves MC, Almeida RM (2000) Densification of hybrid silica-titania sol-gel films studied by ellipsometry and FTIR. Mater Sci Eng B Solid-State Mater Adv Technol 76:193–199. https://doi.org/10.1016/S0921-5107(00)00442-6

    Article  Google Scholar 

  100. Ho CKF, Pita K, Ngo NQ, Kam CH (2005) Optical functions of (x)GeO2:(1-x)SiO2 films determined by multi-sample and multi-angle spectroscopic ellipsometry. Opt Express 13:1049. https://doi.org/10.1364/opex.13.001049

    Article  CAS  Google Scholar 

  101. Guo S, Gustafsson G, Hagel OJ, Arwin H (1996) Determination of refractive index and thickness of thick transparent films by variable-angle spectroscopic ellipsometry: application to benzocyclobutene films. Appl Opt 35:1693. https://doi.org/10.1364/ao.35.001693

    Article  CAS  Google Scholar 

  102. Truijen I, Haeldermans I, Van Bael MK, Van den Rul H, D’Haen J, Mullens J, Terryn H, Goossens V (2007) Influence of synthesis parameters on morphology and phase composition of porous titania layers prepared via water based chemical solution deposition. J Eur Ceram Soc 27:4537–4546. https://doi.org/10.1016/j.jeurceramsoc.2007.02.200

    Article  CAS  Google Scholar 

  103. Himcinschi C, Friedrich M, Frühauf S, Schulz SE, Gessner T, Zahn DRT (2004) Contributions to the static dielectric constant of low-k xerogel films derived from ellipsometry and IR spectroscopy. Thin Solid Films 455–456:433–437. https://doi.org/10.1016/j.tsf.2003.11.241

    Article  CAS  Google Scholar 

  104. Parejo PG, Alvarez-Herrero A, Zayat M, Levy D (2015) Thermo-optic properties of hybrid sol–gel thin films doped with rhodamine 6G at high vacuum conditions. J Mater Sci 50:6677–6687. https://doi.org/10.1007/s10853-015-9222-7

    Article  CAS  Google Scholar 

  105. Wei NN, Yang Z, Pan HB, Zhang F, Liu YX, Wang RP, Shen X, Dai SX, Nie QH (2018) Variable angle spectroscopic ellipsometry and its applications in determining optical constants of chalcogenide glasses in infrared. Chin Phys B 27:067802. https://doi.org/10.1088/1674-1056/27/6/067802

    Article  CAS  Google Scholar 

  106. Rose BA, Maker AJ, Armani AM (2012) Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR. Opt Mater Express 2:671. https://doi.org/10.1364/ome.2.000671

    Article  CAS  Google Scholar 

  107. Ghadyani Z, Kildemo M, Aas LMS, Cohin Y, Søndergård E (2013) Anisotropic plasmonic Cu nanoparticles in sol-gel oxide nanopillars studied by spectroscopic Mueller matrix ellipsometry. Opt Express 21:30796. https://doi.org/10.1364/oe.21.030796

    Article  CAS  Google Scholar 

  108. Lundén H, Liotta A, Chateau D, Lerouge F, Chaput F, Parola S, Brännlund C, Ghadyani Z, Kildemo M, Lindgren M, Lopes C (2015) Dispersion and self-orientation of gold nanoparticles in sol-gel hybrid silica—optical transmission properties. J Mater Chem C 3:1026–1034. https://doi.org/10.1039/c4tc02353f

    Article  Google Scholar 

  109. Almeida RM, Morais PJ, Vasconcelos HC (1997) Optical loss mechanisms in nanocomposite sol-gel planar waveguides. Sol-Gel Opt IV 3136:296–303. https://doi.org/10.1117/12.284127

    Article  CAS  Google Scholar 

  110. Almeida PJ, Morais PJ, Martins O (1998) Factors controlling optical loss in sol-gel films, in: Proc. XVIII Int. Congr. Glas. July 5–10, San Francisco, CA

  111. Orignac X, Barbier D, Min Du X, Almeida RM, McCarthy O, Yeatman E (1999) Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm. Opt Mater 12:1–18. https://doi.org/10.1016/S0925-3467(98)00076-7

    Article  CAS  Google Scholar 

  112. Nasu H (2018) Nonlinear optical properties of materials derived by sol-gel technology. In: Klein L, Aparicio M, Jitianu A (Eds.) Handbook of sol-gel science and technology Springer, Cham, p 1–14. https://doi.org/10.1007/978-3-319-32101-1_49

  113. Ribeiro SJL, Messaddeq Y, Gonçalves RR, Ferrari M, Montagna M, Aegerter MA (2000) Low optical loss planar waveguides prepared in an organic-inorganic hybrid system. Appl Phys Lett 77:3502–3504. https://doi.org/10.1063/1.1329159

    Article  CAS  Google Scholar 

  114. Molina EF, Rocha LA, Caetano BL, Ciuffi KJ, Calefi PS, Nassar EJ (2012) Preparation and study of the titanium oxide thin films doped with Tb3+ and Ce3+ ions. Rev Mater 17:931–938. https://doi.org/10.1590/S1517-70762012000100006

    Article  CAS  Google Scholar 

  115. Bouachiba Y, Taabouche A, Bouabellou A, Hanini F, Sedrati C, Merabti H (2020) TiO2 waveguides thin films prepared by sol-gel method on glass substrates with and without ZnO underlayer. Mater Sci Pol 38:381–385. https://doi.org/10.2478/msp-2020-0043

    Article  CAS  Google Scholar 

  116. Medjaldi F, Bouabellou A, Bouachiba Y, Taabouche A, Bouatia K, Serrar H (2020) Study of TiO2, SnO2 and nanocomposites TiO2:SnO2 thin films prepared by sol-gel method: Successful elaboration of variable-refractive index systems. Mater Res Express 7:016439. https://doi.org/10.1088/2053-1591/ab6c0c

    Article  CAS  Google Scholar 

  117. Franco A, Valcerde-Aguilar G, Garcia-Macedo J (2006) Optical absorption and second harmonic generation in SiO2:DR1 sol-gel films as function of poling time. Proc SPIE, Linear Nonlinear Opt Org Mater VI 6331:633116. https://doi.org/10.1117/12.681250

    Article  CAS  Google Scholar 

  118. Lam VQ, Turrell S, Martucci A, Bouazaoui M, Capoen B (2006) Synthesis and optical properties of MPTMS-capped CdS quantum dots embedded in TiO2 thin films for photonic applications. J Non Cryst Solids 352:3315–3319. https://doi.org/10.1016/j.jnoncrysol.2006.02.096

    Article  CAS  Google Scholar 

  119. Jia B, Buso D, Van Embden J, Li J, Gu M (2010) Highly non-linear quantum dot doped nanocomposites for functional three-dimensional structures generated by two-photon polymerization. Adv Mater 22:2463–2467. https://doi.org/10.1002/adma.201000513

    Article  CAS  Google Scholar 

  120. Li J, Gong Y, Xu J, Wang G, Fang G (2013) Preparation and nonlinear optical properties of Au nanoparticles doped TiO2 thin films. J Sol-Gel Sci Technol 67:527–533. https://doi.org/10.1007/s10971-013-3110-x

    Article  CAS  Google Scholar 

  121. Long H, Fu M, Li Y, Yang G, Lu P (2010) Optical nonlinearities of Au/TiO2 films excited by high-repetition-rate femtosecond laser. Thin Solid Films 519:1346–1350. https://doi.org/10.1016/j.tsf.2010.09.053

    Article  CAS  Google Scholar 

  122. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Stryland EWVan (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26:760–769. https://doi.org/10.1109/3.53394

    Article  CAS  Google Scholar 

  123. Ganeev RA, Ryasnyansky AI, Tugushev RI, Usmanov T (2003) Investigation of nonlinear refraction and nonlinear absorption of semiconductor nanoparticle solutions prepared by laser ablation. J Opt A Pure Appl Opt 5:409–417. https://doi.org/10.1088/1464-4258/5/4/317

    Article  CAS  Google Scholar 

  124. Caldwell JD, Lindsay L, Giannini V, Vurgaftman I, Reinecke TL, Maier SA, Glembocki OJ (2015) Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4:44–68. https://doi.org/10.1515/nanoph-2014-0003

    Article  CAS  Google Scholar 

  125. Chalmers JM, Everall NJ, Schaeberle MD, Levin IW, Lewis EN, Kidder LH, Wilson J, Crocombe R (2002) FT-IR imaging of polymers: an industrial appraisal. Vib Spectrosc 30:43–52. https://doi.org/10.1016/S0924-2031(02)00037-1

    Article  CAS  Google Scholar 

  126. Almeida RM (1988) Vibrational spectroscopy of glasses. J Non Cryst Solids 106:347–358. https://doi.org/10.1016/0022-3093(88)90288-8

    Article  CAS  Google Scholar 

  127. Almeida RM, Guiton TA, Pantano CG (1990) Detection of LO mode in v-SiO2 by infrared diffuse reflectance spectroscopy. J Non Cryst Solids 119:238–241. https://doi.org/10.1016/0022-3093(90)90847-F

    Article  CAS  Google Scholar 

  128. Stuart B, Ando DJ, George WO, McIntyre P (1996) Modern infrared spectroscopy, Jonh Wiley & Sons Ltd, Chichester, Editor Ando D, 2nd edition.

  129. Mojet BL, Ebbesen SD, Lefferts L (2010) Light at the interface: The potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chem Soc Rev 39:4643–4655. https://doi.org/10.1039/c0cs00014k

    Article  CAS  Google Scholar 

  130. Kalampounias AG (2011) IR and Raman spectroscopic studies of sol-gel derived alkaline-earth silicate glasses. Bull Mater Sci 34:299–303. https://doi.org/10.1007/s12034-011-0064-x

    Article  CAS  Google Scholar 

  131. Aguiar H, Serra J, González P, León B (2009) Structural study of sol-gel silicate glasses by IR and Raman spectroscopies. J Non Cryst Solids 355:475–480. https://doi.org/10.1016/j.jnoncrysol.2009.01.010

    Article  CAS  Google Scholar 

  132. Almeida RM (1998) Spectroscopy and structure of sol–gel systems. J Sol–Gel Sci Technol 13:51–59. https://doi.org/10.1023/a:1008643019875

    Article  CAS  Google Scholar 

  133. Gallardo J, Durán A, Di Martino D, Almeida RM (2002) Structure of inorganic and hybrid SiO2 sol-gel coatings studied by variable incidence infrared spectroscopy. J Non Cryst Solids 298:219–225. https://doi.org/10.1016/S0022-3093(02)00921-3

    Article  CAS  Google Scholar 

  134. Du XM, Almeida RM (1997) Effects of thermal treatment on the structure and properties of SiO2-TiO2 gel films on silicon substrates. J Sol-Gel Sci Technol 8:377–380. https://doi.org/10.1007/bf02436868

    Article  CAS  Google Scholar 

  135. Almeida RM, Orignac X, Barbier D (1994) Silica-based sol-gel films doped with active elements. J Sol-Gel Sci Technol 2:465–467

    Article  CAS  Google Scholar 

  136. Portal S, Almeida RM (2004) Variable incidence infrared absorption spectroscopy of gel-derived silica and titania films. Phys Status Solidi Appl Res 201:2941–2947. https://doi.org/10.1002/pssa.200406846

    Article  CAS  Google Scholar 

  137. Schmidt H, Scholze H, Kaiser A (1984) Principles of hydrolysis and condensation reaction of alkoxysilanes. J Non Cryst Solids 63:1–11. https://doi.org/10.1016/0022-3093(84)90381-8

    Article  CAS  Google Scholar 

  138. Matos MC, Ilharco LM, Almeida RM (1992) The evolution of TEOS to silica gel and glass by vibrational spectroscopy. J Non Cryst Solids 147–148:232–237. https://doi.org/10.1016/S0022-3093(05)80622-2

    Article  Google Scholar 

  139. Niznansky D, Rehspringer JL (1995) Infrared study of SiO2 sol to gel evolution and gel aging. J Non Cryst Solids 180:191–196. https://doi.org/10.1016/0022-3093(94)00484-6

    Article  CAS  Google Scholar 

  140. Gnado J, Dhamelincourt P, Pélégris C, Traisnel M, Le Maguer Mayot A (1996) Raman spectra of oligomeric species obtained by tetraethoxysilane hydrolysis-polycondensation process. J Non Cryst Solids 208:247–258. https://doi.org/10.1016/S0022-3093(96)00526-1

    Article  CAS  Google Scholar 

  141. Rubio F, Rubio J, Oteo JL, FT-IR A (1998) study of the hydrolysis of tetraethylorthoselicate (TEOS). Spectrosc Lett 31:199–219. https://doi.org/10.1080/00387019808006772

    Article  CAS  Google Scholar 

  142. Amoriello S, Bianco A, Eusebio L, Gronchi P (2011) Evolution of two acid steps sol-gel phases by FTIR. J Sol-Gel Sci Technol 58:209–217. https://doi.org/10.1007/s10971-010-2379-2

    Article  CAS  Google Scholar 

  143. Jiang H, Zheng Z, Wang X (2008) Kinetic study of methyltriethoxysilane (MTES) hydrolysis by FTIR spectroscopy under different temperatures and solvents. Vib Spectrosc 46:1–7. https://doi.org/10.1016/j.vibspec.2007.07.002

    Article  CAS  Google Scholar 

  144. Shen C, Shaw LL (2010) FTIR analysis of the hydrolysis rate in the sol-gel formation of gadolinia-doped ceria with acetylacetonate precursors. J Sol-Gel Sci Technol 53:571–577. https://doi.org/10.1007/s10971-009-2133-9

    Article  CAS  Google Scholar 

  145. Viart N, Rehspringer JL (1996) Study of the action of formamide on the evolution of a sol by pH measurements and Fourier transformed infra-red spectroscopy. J Non Cryst Solids 195:223–231. https://doi.org/10.1016/0022-3093(95)00540-4

    Article  CAS  Google Scholar 

  146. Fischer D, Pospiech D, Scheler U, Navarro R, Messori M, Fabbri P (2008) Monitoring of the sol-gel synthesis of organic-inorganic hybrids by FTIR transmission, FTIR/ATR, NIR and Raman spectroscopy. Macromol Symp 265:134–143. https://doi.org/10.1002/masy.200850514

    Article  CAS  Google Scholar 

  147. Liu W, Yang J, Xu H, Wang Y, Hu S, Xue C (2013) Effects of chelation reactions between metal alkoxide and acetylacetone on the preparation of MgAl2O4 powders by sol-gel process. Adv Powder Technol 24:436–440. https://doi.org/10.1016/j.apt.2012.09.006

    Article  CAS  Google Scholar 

  148. Niederberger M, Garnweitner G (2006) Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem Eur J 12:7282–7302. https://doi.org/10.1002/chem.200600313

    Article  CAS  Google Scholar 

  149. Niederberger M (2007) Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc Chem Res 40:793–800. https://doi.org/10.1021/ar600035e

    Article  CAS  Google Scholar 

  150. Innocenzi P, Abdirashid MO, Guglielmi M (1994) Structure and properties of sol-gel coatings from methyltriethoxysilane and tetraethoxysilane. J Sol-Gel Sci Technol 3:47–55. https://doi.org/10.1007/BF00490148

    Article  CAS  Google Scholar 

  151. Fidalgo A, Ilharco LM (2001) The defect structure of sol-gel-derived silica/polytetrahydrofuran hybrid films by FTIR. J Non Cryst Solids 283:144–154. https://doi.org/10.1016/S0022-3093(01)00418-5

    Article  CAS  Google Scholar 

  152. Almeida RM, Morais PJ, Marques AC (2002) Planar waveguides for integrated optics prepared by sol-gel methods. Philos Mag B Phys Condens Matter; Stat Mech Electron Opt Magn Prop 82:707–719. https://doi.org/10.1080/13642810110084498

    Article  CAS  Google Scholar 

  153. Innocenzi P (2003) Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview. J Non Cryst Solids 316:309–319. https://doi.org/10.1016/S0022-3093(02)01637-X

    Article  CAS  Google Scholar 

  154. Lucca DA, Ghisleni R, Lee JK, Wang YQ, Nastasi M, Dong J, Mehner A (2008) Effects of ion irradiation on the structural transformation of sol-gel derived TEOS/MTES thin films. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 266:2457–2460. https://doi.org/10.1016/j.nimb.2008.03.022

    Article  CAS  Google Scholar 

  155. Almeida RM, Marques AC, Pelli S, Righini GC, Chiasera A, Mattarelli M, Montagna M, Tosello C, Gonçalves RR, Portales H, Chaussedent S, Ferrari M, Zampedri L (2004) Spectroscopic assessment of silica–titania and silica–hafnia planar waveguides. Philos Mag 84:1659–1666. https://doi.org/10.1080/14786430310001644459

    Article  CAS  Google Scholar 

  156. Almeida RM, Pantano CG (1990) Structural investigation of silica gel films by infrared spectroscopy. J Appl Phys 68:4225–4232. https://doi.org/10.1063/1.346213

    Article  CAS  Google Scholar 

  157. Chrissanthopoulos A, Bouropoulos N, Yannopoulos SN (2008) Vibrational spectroscopic and computational studies of sol-gel derived CaO-MgO-SiO2 binary and ternary bioactive glasses. Vib Spectrosc 48:118–125. https://doi.org/10.1016/j.vibspec.2007.11.008

    Article  CAS  Google Scholar 

  158. Baikousi M, Agathopoulos S, Panagiotopoulos I, Georgoulis AD, Louloudi M, Karakassides MA (2008) Synthesis and characterization of sol-gel derived bioactive CaO-SiO2-P2O5 glasses containing magnetic nanoparticles. J Sol-Gel Sci Technol 47:95–101. https://doi.org/10.1007/s10971-008-1720-5

    Article  CAS  Google Scholar 

  159. Castro Y, Aparicio M, Moreno R, Durán A (2005) Silica-zirconia sol-gel coatings obtained by different synthesis routes. J Sol-Gel Sci Technol 35:41–50. https://doi.org/10.1007/s10971-005-3213-0

    Article  CAS  Google Scholar 

  160. López T, Tzompantzi F, Hernández-Ventura J, Gómez R, Bokhimi X, Pecchi G, Reyes P (2002) Effect of zirconia precursor on the properties of ZrO2-SiO2 sol-gel oxides. J Sol-Gel Sci Technol 24:207–219. https://doi.org/10.1023/A:1015380523481

    Article  Google Scholar 

  161. Baraldi A, Buffagni E, Capelletti R, Mazzera M, Brovelli S, Chiodini N, Lauria A, Moretti F, Paleari A, Vedda A (2007) FTIR spectroscopy to investigate the role of fluorine on the optical properties of pure and rare earth-doped sol-gel silica. J Non Cryst Solids 353:564–567. https://doi.org/10.1016/j.jnoncrysol.2006.10.024

    Article  CAS  Google Scholar 

  162. Wang JA, Bokhimi X, Morales A, Novaro O, López T, Gómez R (1999) Aluminum local environment and defects in the crystalline structure of sol-gel alumina catalyst. J Phys Chem B 103:299–303. https://doi.org/10.1021/jp983130r

    Article  CAS  Google Scholar 

  163. Krishna Priya G, Padmaja P, Warrier KGK, Damodaran AD, Aruldhas G (1997) Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by Fourier transform infrared spectroscopy. J Mater Sci Lett 16:1584–1587. https://doi.org/10.1023/A:1018568418302

    Article  Google Scholar 

  164. Colomban P (1989) Structure of oxide gels and glasses by infrared and Raman scattering - Part 2 Mullites. J Mater Sci 24:3011–3020. https://doi.org/10.1007/BF02385661

    Article  CAS  Google Scholar 

  165. Joe IH, Vasudevan AK, Aruldhas G, Damodaran AD, Warrier KGK (1997) FTIR as a tool to study high-temperature phase formation in sol-gel aluminium titanate. J Solid State Chem 131:181–184. https://doi.org/10.1006/jssc.1997.7371

    Article  CAS  Google Scholar 

  166. Aksay S (2019) Effects of Al dopant on XRD, FT-IR and UV–vis properties of MgO films. Phys B Condens Matter 570:280–284. https://doi.org/10.1016/j.physb.2019.06.020

    Article  CAS  Google Scholar 

  167. López T, Bosch P, Asomoza M, Gómez R, Ramos E (1997) DTA-TGA and FTIR spectroscopies of sol-gel hydrotalcites: aluminum source effect on physicochemical properties. Mater Lett 31:311–316. https://doi.org/10.1016/S0167-577X(96)00296-0

    Article  Google Scholar 

  168. Mora M, López MI, Jiménez-Sanchidrián C, Ruiz JR (2010) MIR and NIR spectroscopy of sol-gel hydrotalcites with various trivalent cations. J Sol-Gel Sci Technol 55:59–65. https://doi.org/10.1007/s10971-010-2213-x

    Article  CAS  Google Scholar 

  169. Sokol D, Vieira DEL, Zarkov A, Ferreira MGS, Beganskiene A, Rubanik VV, Shilin AD, Kareiva A, Salak AN (2019) Sonication accelerated formation of Mg-Al-phosphate layered double hydroxide via sol-gel prepared mixed metal oxides. Sci Rep 9:10419. https://doi.org/10.1038/s41598-019-46910-5

    Article  CAS  Google Scholar 

  170. Bachvarova-Nedelcheva A, Iordanova R, Kostov KL, Gegova R (2020) Sol-gel powder synthesis in the TiO2-TeO2-ZnO system: Structural characterization and properties. Arab J Chem 13:7132–7146. https://doi.org/10.1016/j.arabjc.2020.07.018

    Article  CAS  Google Scholar 

  171. Malakauskaite-Petruleviciene M, Stankeviciute Z, Niaura G, Garskaite E, Beganskiene A, Kareiva A (2016) Characterization of sol-gel processing of calcium phosphate thin films on silicon substrate by FTIR spectroscopy. Vib Spectrosc 85:16–21. https://doi.org/10.1016/j.vibspec.2016.03.023

    Article  CAS  Google Scholar 

  172. Dagys L, Klimavičius V, Kausteklis J, Chodosovskaja A, Aleksa V, Kareiva A, Balevičius V (2015) Solid-state 1H and 31P NMR and FTIR spectroscopy study of static and dynamic structures in sol-gel derived calcium hydroxyapatites. Lith J Phys 55:1–9. https://doi.org/10.3952/physics.v55i1.3052

    Article  Google Scholar 

  173. Vallet-Regí M, Romero AM, Ragel CV, LeGeros RZ (1999) XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. J Biomed Mater Res 44:416–421. https://doi.org/10.1002/(SICI)1097-4636(19990315)44:4<416::AID-JBM7>3.0.CO;2-S

    Article  Google Scholar 

  174. Bollino F, Armenia E, Tranquillo E (2017) Zirconia/hydroxyapatite composites synthesized via sol-gel: Influence of hydroxyapatite content and heating on their biological properties. Materials 10:757. https://doi.org/10.3390/ma10070757

    Article  CAS  Google Scholar 

  175. Lepry WC, Nazhat SN (2020) The anomaly in bioactive sol–gel borate glasses. Mater Adv 1:1371–1381. https://doi.org/10.1039/d0ma00360c

    Article  CAS  Google Scholar 

  176. Rair D, Rochdi A, Majjane A, Jermoumi T, Chahine A, Touhami ME (2016) Synthesis and study by FTIR, 31P NMR and electrochemical impedance spectroscopy of vanadium zinc phosphate glasses prepared by sol–gel route. J Non Cryst Solids 432:459–465. https://doi.org/10.1016/j.jnoncrysol.2015.11.001

    Article  CAS  Google Scholar 

  177. Matysiak W, Tański T, Smok W, Polishchuk O (2020) Synthesis of hybrid amorphous/crystalline SnO2 1D nanostructures: investigation of morphology, structure and optical properties. Sci Rep. 10:14802. https://doi.org/10.1038/s41598-020-71383-2

    Article  CAS  Google Scholar 

  178. Kumar U, Ansaree MJ, Upadhyay S (2017) Structural and optical characterizations of BaSnO3 nanopowder synthesized by aqueous sol-gel method. Process Appl Ceram 11:177–184. https://doi.org/10.2298/PAC1703177K

    Article  CAS  Google Scholar 

  179. Mi L, Zhang Q, Wang H, Wu Z, Guo Y, Li Y, Xiong X, Liu K, Fu W, Ma Y, Wang BZ, Qi XW (2020) Synthesis of BaTiO3 nanoparticles by sol-gel assisted solid phase method and its formation mechanism and photocatalytic activity. Ceram Int 46:10619–10633. https://doi.org/10.1016/j.ceramint.2020.01.066

    Article  CAS  Google Scholar 

  180. Ranjeh M, Masjedi-Arani M, Salavati-Niasari M, Moayedi H (2020) EDTA-modified sol-gel synthesis of monoclinic Li2MnO3 nanoparticles as an effective photocatalyst for degradation of organic dyes. J Mol Liq 300:112292. https://doi.org/10.1016/j.molliq.2019.112292

    Article  CAS  Google Scholar 

  181. Almeida RM, Xu J (2018) Sol-gel processing of sulfide materials, in: Handb. Sol-Gel Sci. Technol. Process. Charact. Appl., pp. 403–428. https://doi.org/10.1007/978-3-319-32101-1_11

  182. Frumarová B, Němec P, Frumar M, Oswald J, Vlček M (1999) Synthesis and optical properties of the Ge-Sb-S:PrCl3 glass system. J Non Cryst Solids 256:266–270. https://doi.org/10.1016/S0022-3093(99)00328-2

    Article  Google Scholar 

  183. Martins O, Xu J, Almeida RM (1999) Sol-gel processing of germanium sulfide based films. J Non Cryst Solids 256:25–30. https://doi.org/10.1016/S0022-3093(99)00469-X

    Article  Google Scholar 

  184. Riyaz S, Parveen A, Azam A (2016) Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route. Perspect Sci 8:632–635. https://doi.org/10.1016/j.pisc.2016.06.041

    Article  Google Scholar 

  185. Ravi K, Jyotshana G, Sanjeev Kumar S, Beer Pal S (2019) Template free synthesis of PbS nanoparticles by sol-gel facile method under IR radiation at room temperature. Appl Innov Res 1:101–105

    Google Scholar 

  186. Li Y, Almeida RM (2012) Elimination of porosity in heavily rare-earth doped sol-gel derived silicate glass films. J Sol-Gel Sci Technol 61:332–339. https://doi.org/10.1007/s10971-011-2632-3

    Article  CAS  Google Scholar 

  187. Nakanishi K, Soga N (1991) Phase separation in gelling silica–organic polymer solution: systems containing poly(sodium styrenesulfonate). J Am Ceram Soc 74:2518–2530. https://doi.org/10.1111/j.1151-2916.1991.tb06794.x

    Article  CAS  Google Scholar 

  188. Nakanishi K (2018) Macroporous morphology control by phase separation, in: Handbook of sol-gel science and technology processing characterization and application, pp. 835–866. https://doi.org/10.1007/978-3-319-32101-1_25

  189. Lu X, Hasegawa G, Kanamori K, Nakanishi K (2020) Hierarchically porous monoliths prepared via sol–gel process accompanied by spinodal decomposition. J Sol-Gel Sci Technol 95:530–550. https://doi.org/10.1007/s10971-020-05370-4

    Article  CAS  Google Scholar 

  190. Marques AC, Almeida RM, Thiema A, Wang S, Falk MM, Jain H (2009) Sol-gel-derived glass scaffold with high pore interconnectivity and enhanced bioactivity. J Mater Res 24:3495–3502. https://doi.org/10.1557/jmr.2009.0440

    Article  CAS  Google Scholar 

  191. Marques AC, Jain H, Kiely C, Song K, Kiely CJ, Almeida RM (2009) Nano/macroporous monolithic scaffolds prepared by the sol-gel method. J Sol-Gel Sci Technol 51:42–47. https://doi.org/10.1007/s10971-009-1960-z

    Article  CAS  Google Scholar 

  192. Liu F, Feng D, Yang H, Guo X (2020) Preparation of macroporous transition metal hydroxide monoliths via a sol-gel process accompanied by phase separation. Sci Rep 10:4331. https://doi.org/10.1038/s41598-020-61195-9

    Article  CAS  Google Scholar 

  193. Lu X, Kanamori K, Nakanishi K (2020) Hierarchically porous monoliths based on low-valence transition metal (Cu, Co, Mn) oxides: gelation and phase separation. Natl Sci Rev 7:1656–1666. https://doi.org/10.1093/nsr/nwaa103

    Article  CAS  Google Scholar 

  194. Zhu Y, Shimizu T, Kitajima T, Morisato K, Moitra N, Brun N, Kiyomura T, Kanamori K, Takeda K, Kurata H, Tafu M, Nakanishi K (2015) Synthesis of robust hierarchically porous zirconium phosphate monolith for efficient ion adsorption. N J Chem 39:2444–2450. https://doi.org/10.1039/c4nj01749h

    Article  CAS  Google Scholar 

  195. Vale M, Loureiro MV, Ferreira MJ, Marques AC (2020) Silica-based microspheres with interconnected macroporosity by phase separation. J Sol-Gel Sci Technol 95:746–759. https://doi.org/10.1007/s10971-020-05257-4

    Article  CAS  Google Scholar 

  196. Loureiro MV, Vale M, De Schrijver A, Bordado JC, Silva E, Marques AC (2018) Hybrid custom-tailored sol-gel derived microscaffold for biocides immobilization. Microporous Mesoporous Mater 261:252–258. https://doi.org/10.1016/j.micromeso.2017.10.056

    Article  CAS  Google Scholar 

  197. Marques AC, M Vale, Vicente D, Schreck M, Tervoort E, Niederberger M, (2021) Porous silica microspheres with immobilized titania nanoparticles for in-flow solar-driven purification of wastewater, Glob. Challenges 5(5):2000116. https://doi.org/10.1002/gch2.202000116

  198. Posset U, Gigant K, Schottner G, Baia L, Popp J (2004) Structure-property correlations in hybrid sol-gel coatings as revealed by Raman spectroscopy. Opt Mater 26:173–179. https://doi.org/10.1016/j.optmat.2003.11.018

    Article  CAS  Google Scholar 

  199. Panitz JC, Wokaun A (1997) Characterization of the sol-gel process using raman spectroscopy organically modified silica gels prepared via the formic acid-alkoxide route. J Sol-Gel Sci Technol 9:251–263. https://doi.org/10.1007/BF02437188

    Article  Google Scholar 

  200. Rubio-Marcos F, del Campo A, Fernandez JF (2018), Confocal Raman microscopy can make a large difference: resolving and manipulating ferroelectric domains for piezoelectric engineering., in: Toporski J., Dieing T., Hollricher O. (Eds.), Confocal Raman Microscopy, Springer Series in Surface Sciences, pp 531-556

  201. Affatigato M (2015) Modern Glass Characterization, Mod. Glas. Charact 1–443. https://doi.org/10.1002/9781119051862

  202. Diem M, Raman Spectroscopy – Polarizability, in: Mod. Vib. Spectrosc. Micro-Spectroscopy, John Wiley & Sons, Ltd: Chichester, UK, 2015

  203. Rojas-Hernandez RE, Barradas NP, Alves E, Santos LF, Almeida RM (2018) Up-conversion emission of aluminosilicate and titania films doped with Er3+ /Yb3+ by ion implantation and sol-gel solution doping. Surf Coat Technol 355:162–168. https://doi.org/10.1016/j.surfcoat.2018.01.056

    Article  CAS  Google Scholar 

  204. Almeida RM (1998) Spectroscopy and structure of sol-gel systems. J Sol-Gel Sci Technol 13:51–59. https://doi.org/10.1023/a:1008643019875

    Article  CAS  Google Scholar 

  205. Johari ND, Rosli ZM, Juoi JM, Yazid SA (2019) Comparison on the TiO2 crystalline phases deposited via dip and spin coating using green sol-gel route. J Mater Res Technol 8:2350–2358. https://doi.org/10.1016/j.jmrt.2019.04.018

    Article  CAS  Google Scholar 

  206. Almeida RM, Gonçalves MC (2014) Crystallization of sol-gel-derived glasses. Int J Appl Glas Sci 5:114–125. https://doi.org/10.1111/ijag.12075

    Article  CAS  Google Scholar 

  207. Wang X, Shen J, Pan Q (2011) Raman spectroscopy of sol-gel derived titanium oxide thin films. J Raman Spectrosc 42:1578–1582. https://doi.org/10.1002/jrs.2899

    Article  CAS  Google Scholar 

  208. Ceballos-Chuc MC, Ramos-Castillo CM, Alvarado-Gil JJ, Oskam G, Rodríguez-Gattorno G (2018) Influence of brookite impurities on the raman spectrum of TiO2 anatase nanocrystals. J Phys Chem C 122:19921–19930. https://doi.org/10.1021/acs.jpcc.8b04987

    Article  CAS  Google Scholar 

  209. Rojas-Hernandez RE, Santos LF, Almeida RM (2018) Tb3+/Yb3+ doped aluminosilicate phosphors for near infrared emission and efficient down-conversion. J Lumin 197:180–186. https://doi.org/10.1016/j.jlumin.2018.01.020

    Article  CAS  Google Scholar 

  210. Jonauske V, Stanionyte S, Chen SW, Zarkov A, Juskenas R, Selskis A, Matijosius T, Yang TCK, Ishikawa K, Ramanauskas R, Kareiva A (2019) Characterization of Sol-Gel derived calcium hydroxyapatite coatings fabricated on patterned rough stainless steel surface. Coatings 9:334. https://doi.org/10.3390/COATINGS9050334

    Article  CAS  Google Scholar 

  211. Tseberlidis G, Trifiletti V, Le Donne A, Frioni L, Acciarri M, Binetti S (2020) Kesterite solar-cells by drop-casting of inorganic sol–gel inks. Sol Energy 208:532–538. https://doi.org/10.1016/j.solener.2020.07.093

    Article  CAS  Google Scholar 

  212. Kumar S, Thangavel R (2013) Structural and optical properties of Na doped ZnO nanocrystalline thin films synthesized using sol-gel spin coating technique. J Sol-Gel Sci Technol 67:50–55. https://doi.org/10.1007/s10971-013-3049-y

    Article  CAS  Google Scholar 

  213. Srikantharajah R, Gerstner K, Romeis S, Peukert W (2016) Polarized Raman scattering and SEM combined full characterization of self-assembled nematic thin films. Nanoscale 8:7672–7682. https://doi.org/10.1039/c6nr01440b

    Article  CAS  Google Scholar 

  214. Nowak E, Szybowicz M, Stachowiak A, Koczorowski W, Schulz D, Paprocki K, Fabisiak K, Los S (2020) A comprehensive study of structural and optical properties of ZnO bulk crystals and polycrystalline films grown by sol-gel method. Appl Phys A Mater Sci Process 126:1–12. https://doi.org/10.1007/s00339-020-03711-2

    Article  CAS  Google Scholar 

  215. Degioanni S, Jurdyc AM, Cheap A, Champagnon B, Bessueille F, Coulm J, Bois L, Vouagner D (2015) Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors. J Appl Phys 118:153103. https://doi.org/10.1063/1.4933280

    Article  CAS  Google Scholar 

  216. Richard D, Rentería M, Carbonari AW, Romero M, Faccio R (2020) Preparation of In-doped Y2O3 ceramics through a sol-gel process: effects on the structural and electronic properties. Ceram Int 46:16088–16095. https://doi.org/10.1016/j.ceramint.2020.03.161

    Article  CAS  Google Scholar 

  217. Guo BL, Chen YH, Liu XJ, Liu WC, Li AD (2014) Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells. AIP Adv 4:097115. https://doi.org/10.1063/1.4895520

    Article  CAS  Google Scholar 

  218. Taziwa R, Meyer E, Takata N (2017) Structural and Raman spectroscopic characterization of C-TiO2 nanotubes synthesized by a template-assisted sol-gel technique. J Nanosci Nanotechnol Res 1:1–11

    Google Scholar 

  219. Marques AC, Almeida RM (2006) Raman spectra and structure of multicomponent oxide planar waveguides prepared by sol-gel. J Sol-Gel Sci Technol 40:371–378. https://doi.org/10.1007/s10971-006-9320-8

    Article  CAS  Google Scholar 

  220. Almeida RM, Du XM (1999) Raman scattering from anatase nanocrystals in sol-gel derived SiO2-TiO2 glass films, in: 5th European Society of Glass Science and Technology conference, Prague (Czech Republic), June 21–24, 1999

  221. Guzmán-Rocha M, Oliva J, Diaz-Torres LA, Montes E (2020) Effect of the reducing atmospheres on the photoluminescent and phosphorescent properties of Sr4Al14O25:Eu2+, Dy3+, Cr3+ phosphors. J Sol-Gel Sci Technol 95:423–431. https://doi.org/10.1007/s10971-020-05299-8

    Article  CAS  Google Scholar 

  222. Tilley RJD (2011) Color and the optical properties of materials, 2nd Ed. WILEY VCH, West Sussex

    Google Scholar 

  223. Park B, Luminescence, Dep. Mater. Sci. Eng. Seoul Natl. Univ. http//Bp.Snu.Ac.Kr. (2012). http://bp.snu.ac.kr/Lectures/pdf/2-3-Luminescence(79)-120501.pdf, Accessed 19 Feb 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Marques.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, A.C., Rojas-Hernandez, R.E. & Almeida, R.M. Optical spectroscopy methods for the characterization of sol–gel materials. J Sol-Gel Sci Technol 100, 1–43 (2021). https://doi.org/10.1007/s10971-021-05592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05592-0

Navigation