Skip to main content
Log in

Ca doping of mesoporous TiO2 films for enhanced photocatalytic efficiency under solar irradiation

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Anatase mesoporous TiO2 films doped with Ca were prepared by sol–gel and deposited onto glass slides. The influence of the dopant in the textural and structural properties of the films was studied together with their photocatalytic activity. Titania sols w/o and with Ca were synthesised from titanium isopropoxide as TiO2 precursor, acetic acid as complexing agent, and polyethylene glycol hexadecyl ether (Brij58) as pore-generating agent. The TiO2 films were characterised by Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy. Environmental ellipsometric porosimetry was used to obtain the adsorption–desorption isotherms and the total pore volume, for determining the pore size distribution and specific surface area (S s) of the films, crucial parameters that govern the photocatalytic behaviour. The photocatalytic activity was evaluated through the degradation of methyl orange (MO) in aqueous solution using a Xe lamp that simulates solar radiation. The photocatalytic activity depends on the dopant amount. The dopant creates levels within the band gap that improving the charge separation, and reduces the recombination e /h + pairs. The best results of MO degradation were obtained for the films sintered at 450 °C for 90 min and doped with 3 % of Ca2+.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roldán MV, de Oña P, Castro Y, Durán A, Faccendini P, Lagier C, Grau R, Pellegri NS (2014) Photocatalytic and biocidal activities of novel coating systems of mesoporous and dense TiO2-anatase containing silver nanoparticles. Mater Sci Eng C 43:630–640

    Article  Google Scholar 

  2. Girginov Ch, Stefchev P, Vitanov P, Hr Dikov (2012) Silver doped TiO2 photocatalyst for methyl orange degradation. J Eng Sci Technol Rev 5:14–17

    Google Scholar 

  3. Radzig M, Nadtochenko V, Koksharova O, Kiwi J, Lipasova V, Khmel I (2013) Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B 102:300–306

    Article  Google Scholar 

  4. Roldán MV, Castro Y, Durán A, Pellegri NS (2015) Enhanced photocatalytic activity of mesoporous SiO2/TiO2 sol–gel coatings doped with Ag nanoparticles. J Solgel Sci Technol 76:180–194

    Article  Google Scholar 

  5. Suárez S, Coronado JM, Portela R, Martín JC, Yates M, Avila P, Sánchez B (2008) On the preparation of TiO2-sepiolite hybrid materials for the photocatalytic degradation of TCE: influence of TiO2 distribution in the mineralization. Environ Sci Eng 42:5892–5896

    Google Scholar 

  6. Hewer TLR, Suárez S, Coronado JM, Portela R, Ávila P, Sánchez B (2009) Hybrid photocatalysts for the degradation of TCE in air. Catal Today 143:302–308

    Article  Google Scholar 

  7. Sakatani Y, Grosso D, Nicole L, Boissière C, de AA Soler-Illia GJ, Sánchez C (2006) Optimised photocatalytic activity of grid-like mesoporous TiO2 films: effect of crystallinity, pore size distribution, and pore accessibility. J Mater Chem 16:77–82

    Article  Google Scholar 

  8. Arconada N, Castro Y, Durán A, Héquet V (2011) Photocatalytic oxidation of methyl ethyl ketones over sol–gel mesoporous and meso-structured TiO2 films obtained by EISA method. Appl Catal B 107:52–58

    Article  Google Scholar 

  9. Arconada N, Castro Y, Durán A (2010) Photocatalytic properties in aqueous solution of porous TiO2-anatase films prepared by sol–gel process. Appl Catal A 385:101–107

    Article  Google Scholar 

  10. Dvoranová D, Brezová V, Mazúr M, Malati MA (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal B 37:91–105

    Article  Google Scholar 

  11. Zaleska A (2008) Doped-TiO2: a review. Recent Pat Eng 2:157–164

    Article  Google Scholar 

  12. Akpan UG, Hameed BH (2011) Enhancement of the photocatalytic activity of TiO2 by doping it with calcium ions. J Colloid Interface Sci 357:168–178

    Article  Google Scholar 

  13. Zhu J, Deng Z, Chen F (2006) Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl Catal B 62:329–335

    Article  Google Scholar 

  14. Khan MR, Chuan TW, Yousuf A, Chowdhury MNK, Kui Cheng C (2015) Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity. Catal Sci Technol 5:2522–2531

    Article  Google Scholar 

  15. Žabova H, Sobek J, Církva V, Šolcova O, Kment Š, Hájek M (2009) Efficient preparation of nanocrystalline anatase TiO2 and V/TiO2 thin layers using microwave drying and/or microwave calcination technique. J Solid State Chem 182:3387–3392

    Article  Google Scholar 

  16. Yang Y, Wang H, Li X, Wang C (2009) Electrospun mesoporous W6+-doped TiO2 thin films for efficient visible-light photocatalysis. Mater Lett 63:331–333

    Article  Google Scholar 

  17. Rampaul A, Parkin IP, O´Neill SA, Desouza J, Mills A, Elliott N (2003) Titania and tungsten doped titania thin films on glass; active photocatalysts. Polyhedron 22:35–44

    Article  Google Scholar 

  18. Iketani K, De Sun R, Toki M, Hirota K, Yamaguchi O (2004) Sol–gel-derived VχTi1−χO2 films and their photocatalytic activities under visible light irradiation Kazuya. Mater Sci Eng B 108:187–193

    Article  Google Scholar 

  19. Zhao G, Kozuka H, Lin H, Yoko T (1999) Sol–gel preparation of Ti1−xVxO2 solid solution film electrodes with conspicuous photoresponse in the visible region. Thin Solid Films 339:123–128

    Article  Google Scholar 

  20. Al-Salim NI, Bagshaw SA, Bittar A, Kemmitt T, Macquillan AJ, Millsa AM, Ryana MJ (2000) Characterisation and activity of sol–gel-prepared TiO2 photocatalysts modified with Ca, Sr or Ba ion additives. J Mater Chem 10:2358–2363

    Article  Google Scholar 

  21. Fu W, Ding S, Wang Y, Wu L, Zhang D, Pan Z, Wang R, Zhang Z, Qiu S (2014) F, Ca co-doped TiO2 nanocrystals with enhanced photocatalytic activity. Dalton Trans 43:16160–16163

    Article  Google Scholar 

  22. Li Y, Peng S, Jiang F, Lu G, Li S (2007) Effect of doping TiO2 with alkaline-earth metal on its photocatalytic activity. J Serch Chem Soc 72:393–402

    Article  Google Scholar 

  23. Kiriakidou F, Kondarides DI, Verykios XE (1999) The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes. Catal Today 54:119–130

    Article  Google Scholar 

  24. Herman GS, Gao Y, Tran TT, Osterwalder J (2000) X-ray photoelectron diffraction study of an anatase thin film: TiO2(001). Surf Sci 447:201–211

    Article  Google Scholar 

  25. Guglielmi M, Brusatin G, Tombolan N (1993) Ion migration in thin sol-gel glass coatings. Riv Staz Sper Vetro Sup 23:495–498

    Google Scholar 

  26. Boissiere C, Grosso D, Lepotre S, Nicole L, Brunet AB, Sánchez C (2005) Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. Langmuir 21:12362–12371

    Article  Google Scholar 

  27. Wang Y, Zhang R, Li J, Li L, Lin S (2014) First-principles study on transition metal-doped anatase TiO2. Nanoscale Res Lett 9:46–53

    Article  Google Scholar 

  28. Fortes LM, Gonçalves MC, Almeida RM, Castro Y, Durán A (2013) Nanostructured glass coatings for solar control with photocatalytic properties. J Non-Cryst Solids 377:250–253

    Article  Google Scholar 

  29. Rosario AV, Christinelli WA, Barreto RN, Pereira EC (2012) Investigation of photocatalytic activity of metal-doped TiO2 nanoparticles prepared by Pechini method. J Solgel Sci Technol 64:734–742

    Article  Google Scholar 

  30. Wang W, Tao J, Wang T, Wang L (2007) Photocatalytic activity of porous TiO2 films prepared by anodic oxidation. Rare Met 26:136–141

    Article  Google Scholar 

  31. Kment S, Gregora I, Kmentová H, Novatná P, Hubicka Z, Krýsa J, Sajdl P, Dejneka A, Brunclíková M, Jastrabík L, Hrabovský M (2012) Raman spectroscopy of dip-coated and spin-coated sol–gel TiO2 thin films on different types of glass substrate. J Solgel Sci Technol 63:294–306

    Article  Google Scholar 

  32. Pillai SC, Periyat P, George R, McCormack DE, Seery MK, Hayden H, Colreavy J, Corr D, Hinder SJ (2007) Synthesis of high-temperature stable anatase TiO2 photocatalyst. J Phys Chem C 111:1605–1611

    Article  Google Scholar 

  33. Pal M, Pal U, Garcíaa JM, Pérez-Rodríguez F (2012) Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res Lett 7:1–12

    Article  Google Scholar 

  34. Yuan Z, Zahng J, Li B, Li J (2007) Effect of metal ion dopants on photochemical properties of anatase TiO2 films synthesized by a modified sol–gel method. Thin Solid Films 515:7091–7095

    Article  Google Scholar 

  35. Rashed MN, El-Amin AA (2007) Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources. Int J Phys Sci 2:73–81

    Google Scholar 

  36. Sakkas VA, Arabatzis IM, Konstantinou IK, Dimou AD, Albanis TA, Falaras P (2004) Metolachlor photocatalytic degradation using TiO2 photocatalysts. Appl Catal B 49:195–205

    Article  Google Scholar 

  37. Chen Y, Dionysiou DD (2008) Bimodal mesoporous TiO2–P25 composite thick films with high photocatalytic activity and improved structural integrity. Appl Catal B 80:147–155

    Article  Google Scholar 

  38. Liu S, Min Z, Hu D, Liu Y (2014) Synthesis of calcium doped TiO2 nanomaterials and their visible light degradation property. In: International conference on material and environmental engineering, pp 43–47

  39. Long R, English NJ (2011) Electronic structure of cation-codoped TiO2 for visible-light photocatalyst applications from hybrid density functional theory calculations. Appl Phys Lett 98:142103–142105

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by PIE-CSIC-2004-60E637. The authors acknowledge Aritz Iglesias for the experimental work and Adolfo del Campo for the Raman measurements. The authors also thank German Castro and Juan Rubio of Spanish CRG BM25-SpLine at the European Synchrotron Radiation in Grenoble (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, Y., Durán, A. Ca doping of mesoporous TiO2 films for enhanced photocatalytic efficiency under solar irradiation. J Sol-Gel Sci Technol 78, 482–491 (2016). https://doi.org/10.1007/s10971-016-3988-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3988-1

Keywords

Navigation