Skip to main content
Log in

Preparation and nonlinear optical properties of Au nanoparticles doped TiO2 thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nano-sized noble metal nanoparticles doped dielectric composite films with large third-order nonlinear susceptibility due to the confinement and the enhancement of local field were considered to be applied for optical information processing devices, such as optical switch or all optical logical gates. In this paper, sol–gel titania thin films doped with gold nanoparticles (AuNPs, ~10 nm in average size) were prepared. AuNPs were firstly synthesized from HAuCl4 in aqueous solution at ~60 °C, using trisodium citrate as the reducing agent, polyvinylpyrrolidone as the stable agent; then the particle size and optical absorption spectra of the AuNPs in aqueous solutions were characterized by transmitting electron microscopy and UV–Vis–NIR spectrometry. Sol–gel 2AuNPs–100TiO2 (in %mol) thin films (5 layers, ~1 μm in thickness) were deposited on silica glass slides by multilayer dip-coating. After heat-treated at 300–1,000 °C in air, the AuNPs–TiO2 thin films were investigated by X-ray diffraction, scanning electron microscopy and atomic force microscopy. The nonlinear optical properties of the AuNPs–TiO2 thin films were measured with the Z-scan technique, using a femtosecond laser (200 fs) at the wavelength of 800 nm. The third-order nonlinear refractive index and nonlinear absorption coefficient of 2AuNPs–100TiO2 films were at the order of 10−12 cm2/W, and the order of 10−6 cm/W, respectively, and the third-order optical nonlinear susceptibility χ(3) was ~6.88 × 10−10 esu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Almeida RM, Marques AC (2008) Mater Sci Eng B 149:118–122

    Article  CAS  Google Scholar 

  2. Almeida RM, Marques AC, Ferrari M (2003) J Sol-Gel Sci Technol 26:891

    Article  CAS  Google Scholar 

  3. Yang L, Saavedra SS, Armstrong NR, Hayes J (1994) Anal Chem 66:1254–1263

    Article  CAS  Google Scholar 

  4. Zhang LP, Hu B, Wang JH (2012) Anal Chim Acta 717:127–133

    Article  CAS  Google Scholar 

  5. Lee M, Kim TS, Choi YS (1997) J Non-Cryst Solids 211:143–149

    Article  CAS  Google Scholar 

  6. Chen K, Gu H, Cai Y, Xiong J, Wang A (2009) J Alloys Compd 476:635–638

    Article  CAS  Google Scholar 

  7. Ghosh B, Chakraborty P (2011) Nucl Instrum Method B 269:1321–1326

    Article  CAS  Google Scholar 

  8. Zhong J, Xiang W, Zhao H, Zhao W, Chen G, Liang X (2012) J Alloys Compd 537:269–274

    Article  CAS  Google Scholar 

  9. Kim JS, Lee KS, Kim SS (2006) Thin Solid Films 515:2332–2336

    Article  CAS  Google Scholar 

  10. Buso D, Post M, Cantalini C, Mulvaney P, Martucci A (2008) Adv Funct Mater 18:3843–3849

    Article  CAS  Google Scholar 

  11. Hossein-Babaei F, Rahbarpour S (2011) Sens Actuators B 160:174–180

    Article  CAS  Google Scholar 

  12. Schultz DA (2003) Curr Opin Biotechnol 14:13–22

    Article  CAS  Google Scholar 

  13. Radecka M, Gorzkowska-Sobaś A, Zakrzewska K, Sobaś P (2004) Opto-Electron Rev 12:53–56

    CAS  Google Scholar 

  14. Bahtat A, Bouderbala M, Bouazaoui M, Mugnier J, Druetta M (1998) Thin Solid Films 323:59–62

    Article  CAS  Google Scholar 

  15. Conde-Gallardo A, Garcia-Rocha M, Palomino-Merino R, Velasquez-Quesada MP, Hernández-Calderón I (2003) Appl Surf Sci 212–213:583–588

    Article  Google Scholar 

  16. Mignotte C (2004) Appl Surf Sci 226:355–370

    Article  CAS  Google Scholar 

  17. Righini GC, Verciani A, Pelli S, Guglielmi M, Martucci A, Fick J, Vitrant G (1996) Pure Appl Opt 5:655–666

    Article  CAS  Google Scholar 

  18. Fick J, Martucci A, Guglielmi M, Schell J (2000) Fiber Integr Opt 19:43–56

    Article  CAS  Google Scholar 

  19. Long H, Fu M, Li Y, Yang G, Lu P (2010) Thin Solid Films 519:1346–1350

    Article  CAS  Google Scholar 

  20. Kyoung M, Lee M (2000) Bull Korean Chem Soc 21:26–28

    CAS  Google Scholar 

  21. Jun HS, Lee K, Yoon S, Lee TS, Kim IH, Jeong JH, Cheong B, Kim DS, Cho KM, Kim WM (2006) Phys Stat Sol A 203:1211–1216

    Article  CAS  Google Scholar 

  22. Tanahashi I, Mito A (2011) Jpn J Appl Phys 50:105001

    Article  Google Scholar 

  23. Adhyapak PV, Singh N, Vijayan A, Aiyer RC, Khanna PK (2007) Mater Lett 61:6–9

    Article  Google Scholar 

  24. Karthikeyan B, Anija M, Philip R (2006) Appl Phys Lett 88:053104

    Article  Google Scholar 

  25. Ismail AA, Bahnemann DW, Wark M (2009) J Phys Chem C 113:7429–7435

    Article  CAS  Google Scholar 

  26. Fu P, Zhang P (2011) Thin Solid Films 519:3480–3486

    Article  CAS  Google Scholar 

  27. Chandran AR, Pal S, Medda SK, De G (2012) Sci Adv Mater 4:663–668

    Article  CAS  Google Scholar 

  28. Manivannan S, Ramaraj R (2012) Chem Eng J 210:195–202

    Article  CAS  Google Scholar 

  29. Tseng KH, Huang JC, Liao CY, Tien DC, Tsung TT (2009) J Alloys Compd 472:446–450

    Article  CAS  Google Scholar 

  30. Liu YC, Lin LH, Chiu WH (2004) J Phys Chem B 108:19237–19240

    Article  CAS  Google Scholar 

  31. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Small 3:1941–1949

    Article  CAS  Google Scholar 

  32. Peng S, Lee Y, Wang C, Yin H, Dai S, Sun S (2008) Nano Res 1:229–234

    Article  CAS  Google Scholar 

  33. Lung JK, Huang JC, Tien DC, Liao CY, Tseng KH, Tsung TT, Kao WS, Tsai TH, Jwo CS, Lin HM, Stobinski L (2007) J Alloys Compd 434–435:655–658

    Article  Google Scholar 

  34. Enüstün BV, Turkevich J (1963) J Am Chem Soc 85:3317–3328

    Article  Google Scholar 

  35. Buso D, Pacifico J, Martucci A, Mulvaney P (2007) Adv Funct Mater 17:347–354

    Article  CAS  Google Scholar 

  36. Karaagac H, Yengel E, Islam MS (2012) J Alloys Compd 521:155–162

    Article  CAS  Google Scholar 

  37. Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Nanotechnology 19:145605

    Article  CAS  Google Scholar 

  38. Sanchez E, Lopez T, Gomez R (1996) J Solid State Chem 122:309–314

    Article  CAS  Google Scholar 

  39. Xu G (2005) Introduction of nanotechnology (in Chinese). Higher Education Press, Beijing

    Google Scholar 

  40. Bohren CF, Huffman DF (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  41. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW (1990) IEEE J Quantum Electron 26:760–769

    Article  CAS  Google Scholar 

  42. Long H, Yang G, Chen A, Li Y, Lu P (2009) Opt Commun 282:1815–1818

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank MOST (2006DFA52910), NSFZhejiang (LY12F04001) for the financial support. This work is also sponsored by K.C.Wong Magna Fund in Ningbo University and the graduate student project (G12JA034) of Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Gong, Y., Xu, J. et al. Preparation and nonlinear optical properties of Au nanoparticles doped TiO2 thin films. J Sol-Gel Sci Technol 67, 527–533 (2013). https://doi.org/10.1007/s10971-013-3110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3110-x

Keywords

Navigation