Skip to main content
Log in

Effect of the reducing atmospheres on the photoluminescent and phosphorescent properties of Sr4Al14O25:Eu2+, Dy3+, Cr3+ phosphors

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work reports the effects of two reducing atmospheres (N2 + H2 and carbon) on the luminescent, morphological, and structural properties of Sr4Al14O25:Eu2+ (1 mol%), Dy3+ (2 mol%), Cr3+ (1–4 mol%) [SALO:Eu, Dy, Cr] phosphors. They were synthesized by a combustion method followed by an annealing treatment in a reducing atmosphere. According to scanning electron microscopy (SEM) images, the samples annealed in both types of reducing atmospheres present microparticles with irregular shape. An increase of Cr concentration from 1 to 4 mol% produced microparticles with higher porosity. X-ray diffraction patterns demonstrated that the orthorhombic phase was maintained in all the samples synthesized with different Cr concentrations or reducing atmospheres. Two main emission bands centered at 490 and 693 nm were observed in the SALO:Eu, Dy, Cr phosphors under excitation at 375 nm. In general, the annealing under carbon atmosphere produced the strongest luminescent emission and the longest phosphorescence times in SALO:Eu, Dy, Cr phosphors. When the Cr concentration is increased from 1 to 4 mol%, the phosphorescence times for the NIR and VIS bands were drastically reduced from ≈1830 to 40–60 s. The phosphorescence intensity was favored by the presence of defects such as oxygen vacancies (Vo) and Dy3+–Vo traps, which were formed after the introduction of Dy3+ and Cr3+ ions in the SALO host. The presence of these defects was confirmed by absorbance measurements. The annealing in carbon atmosphere is simpler than that in H2 + N2 atmosphere and leads to enhanced luminescent properties of SALO:Eu, Dy, Cr phosphors.

Highlights

  • The luminescent properties of SALO:Eu, Dy, Cr strongly depend on the reduced reductive atmosphere.

  • Threefold NIR persistence time enhancement is obtained under carbon reductive atmosphere treatment.

  • NIR luminescent intensity increases under carbon reductive atmosphere treatment.

  • The structural properties of SALO:Eu, Dy, Cr do not depend on the used reductive atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jia W, Yuan H, Lu L, Liu H, Yen W (1998) J Lumin 76:424–428

    Article  Google Scholar 

  2. Chai Y, Zhang P, Zheng Z (2008) Phys B: Condens Matter 403:4120–4122

    Article  CAS  Google Scholar 

  3. Aitasalo T, Hölsä J, Jungner H, Lastusaari M, Niittykoski J (2006) J Phys Chem B 110:4589–4598

    Article  CAS  Google Scholar 

  4. Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y (1996) Electrochem Soc 143:2670–2673

    Article  CAS  Google Scholar 

  5. Jia D (2003) Opt Mater 22:65–69

    Article  CAS  Google Scholar 

  6. Shankar V, Chander H, Divi H, Ghosh P (2003) US Patent 0183807 A1:1–4

  7. Lin Y, Tang Z, Zhang Z (2001) Mater Lett 51:14–18

    Article  CAS  Google Scholar 

  8. García Solé J, Bausá L, Jaque D (2005) An introduction to the optical spectroscopy of inorganic solids. John Wiley & Sons Ltd., England

  9. Hemmer E, Venkatachalam N, Hyodo H, Hattori A, Ebina Y, Kishimoto H, Soga K (2013) Nanoscale 5:1–22

    Article  Google Scholar 

  10. Marciniak L, Bednarkiewocks A (2017) 243:388–393

  11. Xiu J, Murata D, Katayama Y, Ueda J (2017) J Mater Chem B 5:6385–6393

    Article  Google Scholar 

  12. Ekambaram S, Patil KC, Maaza M (2005) J Alloy Compd 393:81–92

    Article  CAS  Google Scholar 

  13. Luitel HN, Watari T, Chand R, Torikai T, Yada M (2013) J Mater 2013:1–10

  14. Kaya S, Karacaoglu E, Karasu B (2012) Ceram Int 38:3701–3706

    Article  Google Scholar 

  15. Lai T, Chang C, Yang C, Das S, Lu C (2013) Ceram Int 39(2013):159–163

    Article  CAS  Google Scholar 

  16. Wang J, Ma Q, Wang Y, Shen H, Yuan Q (2017) Nanoscale 9:6204–6218

    Article  CAS  Google Scholar 

  17. Xiang H, Cheng J, Ma X, Zhou X, Chruma J (2013) ChemSoc Rev 42:6128–6185

    CAS  Google Scholar 

  18. Gao S, Chen D, Li Q, Ye J, Jiang H (2014) Sci Rep 4:1–6

    Google Scholar 

  19. Chihara T, Umezawa M, Miyata K, Sekiyama S, Hosokawa N, Okubo K, Kamimura M, Soga K (2019) Sci Rep 9:12806

    Article  Google Scholar 

  20. Li Y, Gecevicius M, Qiu J (2016) Chem Soc Rev 45:2090–2136

    Article  CAS  Google Scholar 

  21. Sharma S, Gourier D, Viana B, Maldiney T, Teston E, Scherman D, Richard C (2014) Opt Mat 36:1901–1906

    Article  CAS  Google Scholar 

  22. Lécuyer T, Teston E, Ramirez-Garcia G, Maldiney T, Viana B, Seguin J (2016) Theranostics 6:2488–2524

    Article  Google Scholar 

  23. Lin X, Song L, Chen S, Chen X, Wei J, Li J, Huang G, Yang H (2017) Appl Mat Interf 9:41181–41187

    Article  CAS  Google Scholar 

  24. Bessiére A, Sharma S, Basavaraju N, Priolkar K, L Binet, Viana B (2014) Chem Mater 26:1365−1373

  25. Zhong R, Zhang J, Zhang X, Lu S (2006) Appl Phys Lett 88:2019161–2019163

    Google Scholar 

  26. Luitel H, Watari T, Torikai T, Yada M (2009) Opt Mat 31:1200–1204

    Article  CAS  Google Scholar 

  27. Teng Y, Zhou Y, Khisro Y, Zhou Y (2014) Qiu J Mat Chem Phys 147:772–776

    Article  CAS  Google Scholar 

  28. Huyan S, Deng L, Wu Z, Zhao K, Sun J, Wu L, Zhao Y, Yuan H, Gooch M, Lv B, Zhu Chen Y, Chu C (2019) Sci Rep 9:1–7

    Article  CAS  Google Scholar 

  29. Monshi A, Foroughi M, Monshi M (2012) World J Nano Sci Eng 2:154–160

    Article  Google Scholar 

  30. Guo H, Wang Y, Li G, Liu J, Li Y (2016) RSC Adv 1:1–8

    Google Scholar 

  31. Xingdong L, Wangen S (2007) Rare Met 26:305–310

    Article  Google Scholar 

  32. Brito H, Hölsä J, Laamanen L, Lastusaari M, Malkamäki M, Rodrigues L (2012) Opt Mat Expr 2:371–381

    Article  CAS  Google Scholar 

  33. Rezende M, Araujo R, Valerio M, Jackson R (2010) J Phys 249:012042

    Google Scholar 

  34. Li X, Hua Y, Ma H, Deng B, Jia G, Xu G (2015) RSC Adv 1:1–11

    CAS  Google Scholar 

  35. Kumar G, Liu D, Tian Y, Brik M, Sardar D (2015) Opt Mat 50:199–203

    Article  CAS  Google Scholar 

  36. Yahia Z, Bayaklya HN, Shafia M, Paintera S, Taylora V, Greene J, Ros K (2014) Complex Met 1:46–51

    Article  Google Scholar 

  37. Rao V, Prasad P, Babua M, Rao P, Satyanarayana T, Santos L, Veeraiah N (2018) Biomol Spect 188:516–524

    Article  Google Scholar 

  38. Yang Y, Wang Y (2017) Yin Appl Surf Sci 420:399–406

    Article  CAS  Google Scholar 

  39. Guo D, Qian Y, Su Y, Shi H, Li P, Wu J, Wang S, Cui C, Tang H (2017) AIP Adv 7:1–6

    Google Scholar 

  40. Aitasalo T, Deren P, Holsa J, Jungner H, Krupa J, Lastusaari M, Legendziewicz J, Niittykoski J, Strek W (2003) J Sol Stat Chem 171:114–122

    Article  CAS  Google Scholar 

  41. Singh V, Chakaradhar R, Rao J, Kim D (2008) Phosphors, Sol Stat Sci 10:1525–1532

    Article  CAS  Google Scholar 

  42. Dorenbos P (2004) J Lumin 108:301–305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MG-R thanks conacyt for the PhD scholarship. JO thanks the financial support of CONACYT through the CATEDRAS-CONACYT program. Authors also appreciate the technical work performed by Christian Albor for the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Diaz-Torres.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán-Rocha, M., Oliva, J., Diaz-Torres, L.A. et al. Effect of the reducing atmospheres on the photoluminescent and phosphorescent properties of Sr4Al14O25:Eu2+, Dy3+, Cr3+ phosphors. J Sol-Gel Sci Technol 95, 423–431 (2020). https://doi.org/10.1007/s10971-020-05299-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05299-8

Keywords

Navigation