Skip to main content
Log in

Hybrid micro-composite sheets of Polylactic Acid (PLA)/Carbon Black (CB)/natural kenaf fiber processed by calendering method

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Bio-composites filled with natural and bio-fibers can lead to novel green products. However, in terms of processing, there still exist serious challenges in the development of bi-based parts with respect to the materials selection and limitations associated with the fabrication route. Further issues rise when a uniform and homogenous blending of bio-based constituents is required. This study examines the feasibility of two roller mixer method (calendering) in the sheet fabrication of natural kenaf fiber/carbon black (CB) reinforced polylactic acid (PLA) on the basis of melt mixing. To do this, composites of 20 wt% kenaf, based on an optimized filler content, were reinforced with 0–10 wt% of CB to enhance the processability and to evaluate the synergistic effect of CB on kenaf/PLA parts. The results showed a 75% increase in the modulus of the pure PLA filled with 20 wt% kenaf whilst representing the greatest tensile strength amongst kenaf/PLA specimens. Specimens reinforced with 5 and 10 wt% of CB exhibited enhancement in the elongation at break with respect to the reference neat kenaf/PLA composites, which was attributed to the lowered crystallites size and softer interfacial interphase. However, with the addition of only 5 wt% of CB, the tensile modulus and the crystallization improved by ~ 50% compared to that represented by neat kenaf/PLA parts. The microstructural images confirmed the aligned kenaf phase, dispersion state and interfacial bonding of the CB/kenaf/PLA specimens in correlation with the thermal and mechanical response of the specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Original data used in the content of this manuscript is available.

References

  1. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J Mater Sci 55(3):829–892

    Article  CAS  Google Scholar 

  2. Rangappa SM, Siengchin S, Dhakal HN (2020) Green-composites: Ecofriendly and sustainability. Appl Sci Eng Prog 13(3):183–184

    Article  Google Scholar 

  3. Radzuan NAM, Tholibon D, Sulong AB, Muhamad N, Haron CHC (2020) New processing technique for biodegradable kenaf composites: A simple alternative to commercial automotive parts. Compos B Eng 184:107644

    Article  CAS  Google Scholar 

  4. Venkatarajan S, Athijayamani A (2021) An overview on natural cellulose fiber reinforced polymer composites. Mater Today: Proc 37:3620–3624

    CAS  Google Scholar 

  5. Shrivastava A, Dondapati S (2021) Biodegradable composites based on biopolymers and natural bast fibres: a review. Mater Today: Proc 46:1420–1428

    CAS  Google Scholar 

  6. Ramesh P, Durga Prasad B, Narayana K (2018) Characterization of kenaf fiber and its composites: A review. J Reinf Plast Compos 37(11):731–737

    Article  CAS  Google Scholar 

  7. Nematollahi M, Karevan M, Mosaddegh P, Farzin M (2019) Morphology, thermal and mechanical properties of extruded injection molded kenaf fiber reinforced polypropylene composites. Mater Res Express 6(9):095409

    Article  CAS  Google Scholar 

  8. Kamaludin NHI, Ismail H, Rusli A, Ting SS (2021) Thermal behavior and water absorption kinetics of polylactic acid/chitosan biocomposites. Iran Polym J 30(2):135–147. https://doi.org/10.1007/s13726-020-00879-5

    Article  CAS  Google Scholar 

  9. Immonen K, Lahtinen P, Pere J (2017) Effects of Surfactants on the Preparation of Nanocellulose-PLA Composites. Bioeng (Basel, Switz) 4(4):91. https://doi.org/10.3390/bioengineering4040091

    Article  CAS  Google Scholar 

  10. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33

    Article  CAS  Google Scholar 

  11. Chung T-J, Park J-W, Lee H-J, Kwon H-J, Kim H-J, Lee Y-K, Tai Yin Tze W (2018) The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation. Appl Sci 8(3):376

    Article  CAS  Google Scholar 

  12. Gunti R, Ratna Prasad A, Gupta A (2018) Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass. Polym Compos 39(4):1125–1136

    Article  CAS  Google Scholar 

  13. Ahsan Q, Carron TSS, Mustafa Z (2019) On the use of nano fibrillated kenaf cellulose fiber as reinforcement in polylactic acid biocomposites. J Mech Eng Sci 13(2):4970–4988. https://doi.org/10.15282/jmes.13.2.2019.15.0412

    Article  CAS  Google Scholar 

  14. Alias NF, Ismail H, Ishak KMK (2021) Poly(lactic acid)/natural rubber/kenaf biocomposites production using poly(methyl methacrylate) and epoxidized natural rubber as co-compatibilizers. Iran Polym J 30(7):737–749. https://doi.org/10.1007/s13726-021-00927-8

    Article  CAS  Google Scholar 

  15. Altun M, Celebi M, Ovali S (2021) Preparation of the pistachio shell reinforced PLA biocomposites: Effect of filler treatment and PLA maleation. J Thermoplast Compos Mater 08927057211010880

  16. Alias NF, Ismail H, Ishak KMK (2020) Comparison of type of rubber in PLA/rubber/kenaf biocomposite: rheological, mechanical and morphological properties. Macromol Symp 391(1):1900128. https://doi.org/10.1002/masy.201900128

    Article  CAS  Google Scholar 

  17. Sujaritjun W, Uawongsuwan P, Pivsa-Art W, Hamada H (2013) Mechanical property of surface modified natural fiber reinforced PLA biocomposites. Energy Procedia 34:664–672

    Article  CAS  Google Scholar 

  18. Chen P-Y, Lian H-Y, Shih Y-F, Chen-Wei S-M, Jeng R-J (2017) Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites. Mater Chem Phys 196:249–255

    Article  CAS  Google Scholar 

  19. Guo J, Tsou C-H, Yu Y, Wu C-S, Zhang X, Chen Z, Yang T, Ge F, Liu P, Guzman MRD (2021) Conductivity and mechanical properties of carbon black-reinforced poly (lactic acid)(PLA/CB) composites. Iran Polym J 30(12):1251–1262

    Article  CAS  Google Scholar 

  20. Moyo M, Kanny K, Velmurugan R (2021) The efficacy of nanoclay loading in the medium velocity impact resistance of kenaf/PLA biocomposites. Appl Nanosci 11(2):441–453. https://doi.org/10.1007/s13204-020-01602-9

    Article  CAS  Google Scholar 

  21. Nootsuwan N, Wattanathana W, Jongrungruangchok S, Veranitisagul C, Koonsaeng N, Laobuthee A (2018) Development of novel hybrid materials from polylactic acid and nano-silver coated carbon black with distinct antimicrobial and electrical properties. J Polym Res 25(4):90. https://doi.org/10.1007/s10965-018-1484-8

    Article  CAS  Google Scholar 

  22. Pang AL, Ismail H, Bakar AA (2018) Eco-friendly coupling agent-treated kenaf/linear low-density polyethylene/poly (vinyl alcohol) composites. Iran Polym J 27(2):87–96

    Article  Google Scholar 

  23. Akhtar MN, Sulong AB, Nazir MS, Majeed K, Radzi MKF, Ismail NF, Raza MR (2017) Kenaf-biocomposites: manufacturing, characterization, and applications. In: Green Biocomposites. Springer, pp 225–254

  24. Zhan J, Li J, Wang G, Guan Y, Zhao G, Lin J, Naceur H, Coutellier D (2021) Review on the performances, foaming and injection molding simulation of natural fiber composites. Polym Compos 42(3):1305–1324

    Article  CAS  Google Scholar 

  25. Kaiser MR, Anuar HB, Samat NB, Razak SBA (2013) Effect of processing routes on the mechanical, thermal and morphological properties of PLA-based hybrid biocomposite. Iran Polym J 22(2):123–131. https://doi.org/10.1007/s13726-012-0112-4

    Article  CAS  Google Scholar 

  26. Shahar FS, Hameed Sultan MT, Safri SNA, Jawaid M, Abu Talib AR, Basri AA, Md Shah AU (2022) Physical, thermal and tensile behaviour of 3D printed kenaf/PLA to suggest its usability for ankle–foot orthosis – a preliminary study. Rapid Prototyp J ahead-of-print (ahead-of-print). https://doi.org/10.1108/RPJ-08-2021-0207

  27. Sherwani SFK, Sapuan SM, Leman Z, Zainudin ES, Khalina A (2021) Effect of alkaline and benzoyl chloride treatments on the mechanical and morphological properties of sugar palm fiber-reinforced poly(lactic acid) composites. Text Res J 92(3–4):593–607. https://doi.org/10.1177/00405175211041878

    Article  CAS  Google Scholar 

  28. Zabidi NA, Nazri F, Tawakkal ISMA, Basri MSM, Basha RK, Othman SH (2022) Characterization of active and pH-sensitive poly(lactic acid) (PLA)/nanofibrillated cellulose (NFC) films containing essential oils and anthocyanin for food packaging application. Int J Biol Macromol 212:220–231. https://doi.org/10.1016/j.ijbiomac.2022.05.116

    Article  CAS  Google Scholar 

  29. Sadashiv Todkar S, Abasaheb Patil S (2022) Creep and heat deflection temperature (HDT) study of Pineapple leaf fibre (PALF) and Montmorillonite (MMT) nanoclay reinforced Poly-lactic acid (PLA) based laminated hybrid biocomposite. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2022.04.343

  30. Song X, Fang C, Li Y, Wang P, Zhang Y, Xu Y (2022) Characterization of mechanical properties of jute/PLA composites containing nano SiO2 modified by coupling agents. Cellulose 29(2):835–848. https://doi.org/10.1007/s10570-021-04300-z

    Article  CAS  Google Scholar 

  31. Jamadi AH, Razali N, Petrů M, Taha MM, Muhammad N, Ilyas RA (2021) Effect of chemically treated kenaf fibre on mechanical and thermal properties of PLA composites prepared through Fused Deposition Modeling (FDM). Polymers (Basel) 13(19):3299

    Article  CAS  PubMed Central  Google Scholar 

  32. Tharazi I, Sulong AB, Muhamad N, Haron CHC, Tholibon D, Ismail NF, Radzi MKFM, Razak Z (2017) Optimization of hot press parameters on tensile strength for unidirectional long kenaf fiber reinforced polylactic-acid composite. Procedia Engineering 184:478–485. https://doi.org/10.1016/j.proeng.2017.04.150

    Article  CAS  Google Scholar 

  33. Nematollahi M, Karevan M, Fallah M, Farzin M (2020) Experimental and numerical study of the critical length of short kenaf fiber reinforced polypropylene composites. Fibers and Polymers 21(4):821–828

    Article  CAS  Google Scholar 

  34. Sui G, Liu D, Liu Y, Ji W, Zhang Q, Fu Q (2019) The dispersion of CNT in TPU matrix with different preparation methods: solution mixing vs melt mixing. Polymer 182:121838

    Article  CAS  Google Scholar 

  35. Graninger G, Kumar S, Garrett G, Falzon BG (2020) Effect of shear forces on dispersion-related properties of microcrystalline cellulose-reinforced EVOH composites for advanced applications. Compos A Appl Sci Manuf 139:106103

    Article  CAS  Google Scholar 

  36. da Luz FS, Garcia Filho FdC, Del-Rio MTG, Nascimento LFC, Pinheiro WA, Monteiro SN (2020) Graphene-incorporated natural fiber polymer composites: A first overview. Polymers (Basel) 12(7):1601

    Article  CAS  Google Scholar 

  37. Sapiai N, Jumahat A, Jawaid M, Khan A (2020) Effect of MWCNT surface functionalisation and distribution on compressive properties of kenaf and hybrid kenaf/glass fibres reinforced polymer composites. Polym (Basel) 12(11):2522

    Article  CAS  Google Scholar 

  38. Abu-Zurayk R, Hamadneh I, Al-Dujaili AH (2020) Preparation and characterization of polyethylene/cellulose composite with diatomite and bentonite as fillers. Polym-Plastics Technol Mater 59(5):546–554

    Article  CAS  Google Scholar 

  39. Ibrahim NA, Yunus WMZW, Othman M, Abdan K, Hadithon KA (2010) Poly (lactic acid)(PLA)-reinforced kenaf bast fiber composites: the effect of triacetin. J Reinf Plast Compos 29(7):1099–1111

    Article  CAS  Google Scholar 

  40. Lee CH, Khalina A, Lee SH (2021) Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: a review. Polymers (Basel) 13(3):438

    Article  CAS  Google Scholar 

  41. Zaaba NF, Jaafar M, Ismail H (2021) Tensile and morphological properties of nanocrystalline cellulose and nanofibrillated cellulose reinforced PLA bionanocomposites: A review. Polym Eng Sci 61(1):22–38

    Article  CAS  Google Scholar 

  42. Lee B-H, Kim H-S, Lee S, Kim H-J, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: Role of improved interfacial adhesion in the carding process. Compos Sci Technol 69(15–16):2573–2579

    Article  CAS  Google Scholar 

  43. Zare Y, Rhee KY, Hui D (2017) Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites. Compos B Eng 122:41–46. https://doi.org/10.1016/j.compositesb.2017.04.008

    Article  CAS  Google Scholar 

  44. Tandon GP, Weng GJ (1984) The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 5(4):327–333

    Article  Google Scholar 

  45. Sheng N, Boyce MC, Parks DM, Rutledge G, Abes J, Cohen R (2004) Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45(2):487–506

    Article  CAS  Google Scholar 

  46. J. C. Halpin Affdl JLK, (1976) The Halpin-Tsai equations: A review. Polym Eng Sci 16(5):344–352

    Article  Google Scholar 

  47. Corcione CE, Gervaso F, Scalera F, Padmanabhan SK, Madaghiele M, Montagna F, Sannino A, Licciulli A, Maffezzoli A (2019) Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. Ceram Int 45(2):2803–2810

    Article  CAS  Google Scholar 

  48. Chen L, Hou J, Chen Y, Wang H, Duan Y, Zhang J (2019) Synergistic effect of conductive carbon black and silica particles for improving the pyroresistive properties of high density polyethylene composites. Compos B Eng 178:107465

    Article  CAS  Google Scholar 

  49. Tholibon D, Tharazi I, Sulong A, Muhamad N, Ismial N, Radzi M, Radzuan NM, Hui D (2019) Kenaf fiber composites: A review on synthetic and biodegradable polymer matrix. J Kejuruter 31:65–76

    Google Scholar 

  50. Seong O, Han KM, Sim IN, Bhuiyan M, Jang Y, Ghaffar J, Kalaitzidou K (2012) Understanding the reinforcing mechanisms in kenaf fiber/PLA and kenaf fiber/PP composites: A comparative study. Int J Polym Sci 2012:679252. https://doi.org/10.1155/2012/679252

    Article  CAS  Google Scholar 

  51. Park J-M, Choi J-Y, Wang Z-J, Kwon D-J, Shin P-S, Moon S-O, DeVries KL (2015) Comparison of mechanical and interfacial properties of kenaf fiber before and after rice-washed water treatment. Compos B Eng 83:21–26

    Article  CAS  Google Scholar 

  52. Lo Re G, Morreale M, Scaffaro R, La Mantia FP (2012) Kenaf-filled biodegradable composites: rheological and mechanical behaviour. Polym Int 61(10):1542–1548

    Article  CAS  Google Scholar 

  53. Arrigo R, Bartoli M, Malucelli G (2020) Poly (lactic acid)–biochar biocomposites: Effect of processing and filler content on rheological, thermal, and mechanical properties. Polymers (Basel) 12(4):892

    Article  CAS  PubMed Central  Google Scholar 

  54. Aumnate C, Soatthiyanon N, Makmoon T, Potiyaraj P (2021) Polylactic acid/kenaf cellulose biocomposite filaments for melt extrusion based-3D printing. Cellulose 28(13):8509–8525

    Article  CAS  Google Scholar 

  55. Sauer BB, Kampert WG (1998) Influence of viscosity on forced and spontaneous spreading: Wilhelmy fiber studies including practical methods for rapid viscosity measurement. J Colloid Interface Sci 199(1):28–37

    Article  CAS  Google Scholar 

  56. Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63(9):1247–1254

    Article  CAS  Google Scholar 

  57. Karevan M, Kalaitzidou K (2013) Formation of a complex constrained region at the graphite nanoplatelets-polyamide 12 interface. Polymer 54(14):3691–3698. https://doi.org/10.1016/j.polymer.2013.05.019

    Article  CAS  Google Scholar 

  58. Han SO, Karevan M, Sim IN, Bhuiyan MA, Jang YH, Ghaffar J, Kalaitzidou K (2012) Understanding the reinforcing mechanisms in kenaf fiber/PLA and kenaf fiber/PP composites: A comparative study. Int J Polym Sci 2012

  59. Han SO, Karevan M, Bhuiyan MA, Park JH, Kalaitzidou K (2012) Effect of exfoliated graphite nanoplatelets on the mechanical and viscoelastic properties of poly (lactic acid) biocomposites reinforced with kenaf fibers. J Mater Sci 47(8):3535–3543

    Article  CAS  Google Scholar 

  60. Idumah CI, Hassan A (2016) Effect of exfoliated graphite nanoplatelets on thermal and heat deflection properties of kenaf polypropylene hybrid nanocomposites. J Polym Eng 36(9):877–889

    Article  CAS  Google Scholar 

  61. Khan A, Asiri AM, Jawaid M, Saba N (2020) Effect of cellulose nano fibers and nano clays on the mechanical, morphological, thermal and dynamic mechanical performance of kenaf/epoxy composites. Carbohyd Polym 239:116248

    Article  CAS  Google Scholar 

  62. Orue A, Eceiza A, Peña-Rodriguez C, Arbelaiz A (2016) Water uptake behavior and young modulus prediction of composites based on treated sisal fibers and poly (lactic acid). Materials 9(5):400

    Article  PubMed Central  CAS  Google Scholar 

  63. Hubbe MA, Gardner DJ, Shen W (2015) Contact angles and wettability of cellulosic surfaces: A review of proposed mechanisms and test strategies. BioResources 10(4):8657–8749

    CAS  Google Scholar 

  64. Pinto AM, Moreira S, Gonçalves IC, Gama FM, Mendes AM, Magalhães FD (2013) Biocompatibility of poly (lactic acid) with incorporated graphene-based materials. Colloids Surf, B 104:229–238

    Article  CAS  Google Scholar 

  65. Friedrich D (2021) Thermoplastic moulding of Wood-Polymer Composites (WPC): a review on physical and mechanical behaviour under hot-pressing technique. Compos Struct 113649

  66. Zhong Y, Godwin P, Jin Y, Xiao H (2020) Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv Ind Eng Polym Res 3(1):27–35

    Google Scholar 

  67. Ncube LK, Ude AU, Ogunmuyiwa EN, Zulkifli R, Beas IN (2020) Environmental impact of food packaging materials: A review of contemporary development from conventional plastics to polylactic acid based materials. Materials 13(21):4994

    Article  CAS  PubMed Central  Google Scholar 

  68. Shi X, Jing Z, Zhang G (2018) Influence of PLA stereocomplex crystals and thermal treatment temperature on the rheology and crystallization behavior of asymmetric poly (L-Lactide)/poly (D-lactide) blends. J Polym Res 25(3):1–16

    Article  CAS  Google Scholar 

  69. Komal UK, Lila MK, Singh I (2020) PLA/banana fiber based sustainable biocomposites: a manufacturing perspective. Compos B Eng 180:107535

    Article  CAS  Google Scholar 

  70. Piekarska K, Sowinski P, Piorkowska E, Haque MM-U, Pracella M (2016) Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers. Compos A Appl Sci Manuf 82:34–41

    Article  CAS  Google Scholar 

  71. Ouchiar S, Gg S, Cabaret C, Gloaguen V (2016) Influence of the filler nature on the crystalline structure of polylactide-based nanocomposites: new insights into the nucleating effect. Macromolecules 49(7):2782–2790

    Article  CAS  Google Scholar 

  72. Xu J-Z, Zhong G-J, Hsiao BS, Fu Q, Li Z-M (2014) Low-dimensional carbonaceous nanofiller induced polymer crystallization. Prog Polym Sci 39(3):555–593. https://doi.org/10.1016/j.progpolymsci.2013.06.005

    Article  CAS  Google Scholar 

  73. Ming Y, Zhou Z, Hao T, Nie Y (2022) Polymer Nanocomposites: Role of modified filler content and interfacial interaction on crystallization. Eur Polymer J 162:110894

    Article  CAS  Google Scholar 

  74. Guo J, Tsou C-H, Yu Y, Wu C-S, Zhang X, Chen Z, Yang T, Ge F, Liu P, Guzman MRD (2021) Conductivity and mechanical properties of carbon black-reinforced poly(lactic acid) (PLA/CB) composites. Iran Polym J 30(12):1251–1262. https://doi.org/10.1007/s13726-021-00973-2

    Article  CAS  Google Scholar 

  75. Jiang Z, Jin J, Xiao C, Li X (2012) Effect of surface modification of carbon black (CB) on the morphology and crystallization of poly (ethylene terephthalate)/CB masterbatch. Colloids Surf, A 395:105–115

    Article  CAS  Google Scholar 

  76. Delgado PA, Brutman JP, Masica K, Molde J, Wood B, Hillmyer MA (2016) High surface area carbon black (BP‐2000) as a reinforcing agent for poly [(−)‐lactide]. J Appl Polym Sci 133(45)

  77. Li Y, Mi J, Fu H, Zhou H, Wang X (2019) Nanocellular Foaming Behaviors of Chain-Extended Poly(lactic acid) Induced by Isothermal Crystallization. ACS Omega 4:12512–12523. https://doi.org/10.1021/acsomega.9b01620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Murariu M, Dechief A-L, Ramy-Ratiarison R, Paint Y, Raquez J-M, Dubois P (2015) Recent advances in production of poly (lactic acid)(PLA) nanocomposites: a versatile method to tune crystallization properties of PLA. Nanocomposites 1(2):71–82

    Article  CAS  Google Scholar 

  79. Tang Z, Zhang C, Liu X, Zhu J (2012) The crystallization behavior and mechanical properties of polylactic acid in the presence of a crystal nucleating agent. J Appl Polym Sci 125(2):1108–1115

    Article  CAS  Google Scholar 

  80. Moyo M, Kanny K, Velmurugan R (2020) The efficacy of nanoclay loading in the medium velocity impact resistance of kenaf/PLA biocomposites. Appl Nanosci. https://doi.org/10.1007/s13204-020-01602-9

    Article  Google Scholar 

  81. Song Y, Jiang W, Zhang Y, Wang H, Zou F, Yu K, Han G (2018) A novel process of nanocellulose extraction from kenaf bast. Mater Res Express 5(8):085032

    Article  CAS  Google Scholar 

  82. Kim D-Y, Lee B-M, Koo DH, Kang P-H, Jeun J-P (2016) Preparation of nanocellulose from a kenaf core using E-beam irradiation and acid hydrolysis. Cellulose 23(5):3039–3049

    Article  CAS  Google Scholar 

  83. Gao H, Qiang T (2017) Fracture surface morphology and impact strength of cellulose/PLA composites. Materials 10(6):624

    Article  PubMed Central  CAS  Google Scholar 

  84. Graupner N, Rößler J, Ziegmann G, Müssig J (2014) Fibre/matrix adhesion of cellulose fibres in PLA, PP and MAPP: a critical review of pull-out test, microbond test and single fibre fragmentation test results. Compos A Appl Sci Manuf 63:133–148

    Article  CAS  Google Scholar 

  85. Ghaffar SH, Madyan OA, Fan M, Corker J (2018) The influence of additives on the interfacial bonding mechanisms between natural fibre and biopolymer composites. Macromol Res 26(10):851–863

    Article  CAS  Google Scholar 

  86. Hu R, Lim J-K (2007) Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J Compos Mater 41(13):1655–1669

    Article  CAS  Google Scholar 

  87. Qiao R, Deng H, Putz KW, Brinson LC (2011) Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites. J Polym Sci, Part B: Polym Phys 49(10):740–748. https://doi.org/10.1002/polb.22236

    Article  CAS  Google Scholar 

  88. Venkategowda T, Manjunatha L, Anilkumar P (2022) Dynamic mechanical behavior of natural fibers reinforced polymer matrix composites–A review. Mater Today Proc 54:395–401

    Article  CAS  Google Scholar 

  89. Sarker F, Potluri P, Afroj S, Koncherry V, Novoselov KS, Karim N (2019) Ultrahigh performance of nanoengineered graphene-based natural jute fiber composites. ACS Appl Mater Interfaces 11(23):21166–21176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The author received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

The author contributed to the study conception and design. Material preparation, data collection and analysis were performed by Mehdi Karevan. The first draft of the manuscript was written by Mehdi Karevan and the author commented on previous versions of the manuscript. The author read and approved the final manuscript.

Corresponding author

Correspondence to Mehdi Karevan.

Ethics declarations

Ethics approval

N/A.

Consent to participate

N/A.

Conflicts of interest/Competing interests

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karevan, M. Hybrid micro-composite sheets of Polylactic Acid (PLA)/Carbon Black (CB)/natural kenaf fiber processed by calendering method. J Polym Res 29, 395 (2022). https://doi.org/10.1007/s10965-022-03245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03245-6

Keywords

Navigation