Skip to main content
Log in

Influence of PLA stereocomplex crystals and thermal treatment temperature on the rheology and crystallization behavior of asymmetric poly(L-Lactide)/poly(D-lactide) blends

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Asymmetric poly(L-lactide)/poly(D-Lactide) (PLLA/PDLA) blends were prepared by adding small amounts of PDLA into the PLLA matrix with the formation of stereocomplex crystallites (sc-crystallites). Rheological results indicated that the PLLA/PDLA melt at lower temperatures (<Tm,sc, the melting temperature of the formed stereocomplex crystallites) underwent the transition from liquid-like to solid-like viscoelastic behaviors with increasing of the PDLA concentration, which was related to the sc-crystallites reserved in the melt of asymmetric PLLA/PDLA blends. Dissolution experiment indicated the presence of sc-crystallites network structure in the PLLA/PDLA blends, and the size of the sc-crystallite junction particles network increased with increasing of the PDLA concentration. DSC and POM studies indicated that the PDLA concentration and the thermal treatment temperature had a significant influence on the PLLA crystallizability behavior. At low thermal treatment temperature (<T m,sc ), reserved sc-crystallites showed an obvious promoting effect for PLLA crystallization. With increasing of the thermal treatment temperature, its promoting effect decreased due to melting of the sc-crystallites. This result suggests the sc-crystallites played two roles: nucleation sites and cross-linking points, and the two roles had a competitive relationship with change of the thermal treatment temperature and the PDLA concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bai H, Liu H, Bai D, Zhang Q, Wang K, Deng H, Chen F, Fu Q (2014) Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process. Polym Chem 5:5985–5993

    Article  CAS  Google Scholar 

  2. Corneillie S, Smet M (2015) PLA architectures: the role of branching. Polym Chem 6:850–867

    Article  CAS  Google Scholar 

  3. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    Article  CAS  Google Scholar 

  4. Yang F, Murugan R, Ramakrishna S, Wang X, Ma Y-X, Wang S (2004) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25:1891–1900

    Article  CAS  Google Scholar 

  5. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92:227–231

    Article  CAS  Google Scholar 

  6. Xu Y, Wang Y, Xu T, Zhang J, Liu C (2014) Crystallization kinetics and morphology of partially melted poly(lactic acid). Polym Test 37:179–185

    Article  CAS  Google Scholar 

  7. Zeng X, Wu B, Wu L, Hu J, Bu Z, Li BG (2014) Poly(L-lactic acid)-block-poly(butylene succinate-co-butylene adipate) multiblock copolymers: from synthesis to thermo-mechanical properties. Ind Eng Chem Res 53:3550–3558

    Article  CAS  Google Scholar 

  8. Xu Z, Niu Y, Yang L, Xie W, Li H, Gan Z, Wang Z (2010) Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer 51:730–737

    Article  CAS  Google Scholar 

  9. Wang L, Jing X, Cheng H, Hu X, Yang L, Huang Y (2012) Rheology and crystallization of long-chain branched poly(L-lactide)s with controlled branch length. Ind Eng Chem Res 51:10731–10741

    Article  CAS  Google Scholar 

  10. Wang L, Jing X, Cheng H, Hu X, Yang L, Huang Y (2012) Blends of linear and long-chain branched poly(L-lactide)s with high melt strength and fast crystallization rate. Ind Eng Chem Res 51:10088–10099

    Article  CAS  Google Scholar 

  11. Brutman JP, Delgado PA, Hillmyer MA (2014) Polylactide vitrimers. ACS Macro Lett 3:607–610

    Article  CAS  Google Scholar 

  12. Xie M, Wang L, Ge J, Guo B, Ma PX (2015) Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering. ACS Appl Mater Inter 7:6772–6781

    Article  CAS  Google Scholar 

  13. Fischer AM, Wolf FK, Frey H (2012) Long-chain branched poly(Lactide)s based on polycondensation of AB2-type macromonomers. Macromol Chem Phys 213:1349–1358

    Article  CAS  Google Scholar 

  14. Ishida K, Furuhashi Y, Yoshie N (2014) Synthesis of Diels–Alder network polymers from bisfuranic terminated poly (L-lactide) and tris-maleimide. Polym Degrad Stabil 110:149–155

    Article  CAS  Google Scholar 

  15. Chakoli AN, He J, Chayjan MA, Huang Y, Zhang B (2015) Irradiation of poly(L-lactide) biopolymer reinforced with functionalized MWCNTs. RSC Adv 5:55544–55549

    Article  CAS  Google Scholar 

  16. Zhang D, Kandadai MA, Cech J, Roth S, Curran SA (2006) Poly(L-lactide)(PLLA)/multiwalled carbon nanotube (MWCNT) composite: characterization and biocompatibility evaluation. J Phys Chem B 110:12910–12915

    Article  CAS  Google Scholar 

  17. Jing Z, Shi X, Zhang G, Qin J (2015) Synthesis, stereocomplex crystallization and properties of poly (L-lactide)/four-armed star poly (D-Lactide) functionalized carbon nanotubes nanocomposites. Polym Adv Technol 26:223–233

    Article  CAS  Google Scholar 

  18. Yang JH, Lin SH, Lee YD (2012) Preparation and characterization of poly(L-lactide)–graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22:10805–10815

    Article  CAS  Google Scholar 

  19. Gu J, Li N, Tian L, Lv Z, Zhang Q (2015) High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Adv 5:36334–36339

    Article  CAS  Google Scholar 

  20. Zheng X, Zhou S, Li X, Weng J (2006) Shape memory properties of poly(D, L-lactide)/hydroxyapatite composites. Biomaterials 27:4288–4295

    Article  CAS  Google Scholar 

  21. Ignjatović N, Tomić S, Dakić M, Miljković M, Plavšić M, Uskoković DS (1999) Properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials 20:809–816

    Article  Google Scholar 

  22. Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542

    Article  CAS  Google Scholar 

  23. Liu H, Bai D, Bai H, Zhang Q, Fu Q (2015) Constructing stereocomplex structure at the interface for remarkably accelerating matrix crystallization and enhancing mechanical properties of poly(L-lactide)/multi-walled carbon nanotubes nanocomposites. J Mater Chem A 3:13835–13847

    Article  CAS  Google Scholar 

  24. Yin HY, Wei XF, Bao RY, Dong QX, Liu ZY, Yang W, Xie BH, Yang MB (2015) Enantiomeric poly(D-lactide) with a higher melting point served as a significant nucleating agent for poly(L-lactide). Cryst Eng Comm 17:4334–4342

    Article  CAS  Google Scholar 

  25. Jing Z, Shi X, Zhang G, Lei R (2015) Investigation of poly(lactide) stereocomplexation between linear poly(L-lactide) and PDLA-PEG-PDLA tri-block copolymer. Polym Int 64:1399–1407

    Article  CAS  Google Scholar 

  26. Shao J, Sun J, Bian X, Cui Y, Li G, Chen X (2012) Investigation of poly(lactide) stereocomplexes: 3-armed poly(L-lactide) blended with linear and 3-armed enantiomers. J Phys Chem B 116:9983–9991

    Article  CAS  Google Scholar 

  27. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

    Article  CAS  Google Scholar 

  28. Tsuji H, Ikada Y (1999) Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films. Polymer 40:6699–6708

    Article  CAS  Google Scholar 

  29. Yamane H, Sasai K, Takano M, Takahashi M (2004) Poly(D-lactic acid) as a rheological modifier of poly(L-lactic acid): shear and biaxial extensional flow behavior. J Rheol 48:599–609

    Article  CAS  Google Scholar 

  30. Inkinen S, Stolt M, Sodergard A (2011) Effect of blending ratio and oligomer structure on the thermal transitions of stereocomplexes consisting of D-lactic acid oligomer and poly(L-lactide). Polym Adv Technol 22:1658–1664

    Article  CAS  Google Scholar 

  31. Wei XF, Bao R, Cao Z, Yang W, Xie B, Yang M (2014) Stereocomplex crystallite network in asymmetric PLLA/PDLA blends: formation, structure, and confining effect on the crystallization rate of homocrystallites. Macromolecules 47:1439–1448

    Article  CAS  Google Scholar 

  32. Ma, P.; Shen, T.; Xu, P.; Dong, W.; Lemetra, P.J.; Chen, M. superior Performance of fully bio-based poly(lactide) via stereocomplexation-induced phase separation: structure versus property. ACS Sustain Chem Eng 2015, 3, 1470–1478

  33. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B (2000) Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 41:8909–8919

    Article  CAS  Google Scholar 

  34. Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide)(PLLA)–crystallization and mechanical property effects. Compos Sci Technol 70:815–821

    Article  CAS  Google Scholar 

  35. Sun Y, He C (2012) Synthesis and stereocomplex crystallization of poly(lactide)–graphene oxide nanocomposites. ACS Macro Lett 1:709–713

    Article  CAS  Google Scholar 

  36. Baimark Y, Srihanam P (2015) Influence of chain extender on thermal properties and melt flow index of stereocomplex PLA. Polym Test 45:52–57

    Article  CAS  Google Scholar 

  37. Pan P, Han L, Bao J, Xie Q, Shan G, Bao Y (2015) Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects. J Phys Chem B 119:6462–6470

    Article  CAS  Google Scholar 

  38. Li Y, Han C, Bian J, Han L, Dong L, Gao G (2012) Rheology and biodegradation of polylactide/silica nanocomposites. Polym Composite 33:1719–1727

    Article  CAS  Google Scholar 

  39. Raffa P, Stuart MCA, Broekhuis AA, Picchioni F (2014) The effect of hydrophilic and hydrophobic block length on the rheology of amphiphilic diblock polystyrene-b-poly(sodium methacrylate) copolymers prepared by ATRP. J Colloid Interf Sci 428:152–161

    Article  CAS  Google Scholar 

  40. Jing Z, Shi X, Zhang G, Li J (2015) Rheology and crystallization behavior of PLLA/TiO2-g-PDLA composites. Polym Adv Technol 26:528–537

    Article  CAS  Google Scholar 

  41. Narita J, Katagiri M, Tsuji H (2013) Highly enhanced accelerating effect of melt-recrystallized stereocomplex crystallites on poly(L-lactic acid) crystallization, 2-effects of poly(D-lactic acid) concentration. Macromol Mater Eng 298:270–282

    Article  CAS  Google Scholar 

  42. Coppola S, Acierno S, Grizzuti N, Vlassopoulos D (2006) Viscoelastic behavior of semicrystalline thermoplastic polymers during the early stages of crystallization. Macromolecules 39:1507–1514

    Article  CAS  Google Scholar 

  43. Li Y, Xin S, Bian Y, Dong Q, Han C, Xu K, Dong L (2015) Stereocomplex crystallite network in poly(D, L-lactide): formation, structure and the effect on shape memory behaviors and enzymatic hydrolysis of poly(D, L-lactide). RSC Adv 5:24352–24362

    Article  CAS  Google Scholar 

  44. Yamane H, Sasai K (2003) Effect of the addition of poly(D-lactic acid) on the thermal property of poly (L-lactic acid). Polymer 44:2569–2575

    Article  CAS  Google Scholar 

  45. Okihara T, Tsuji M, Kawaguchi A, Katayama KI, Tsuji H, Hyon SH, Ikada Y (1991) Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide). J Macromol Sci Part B Phys 30:119–140

    Article  CAS  Google Scholar 

  46. Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci Polym Phys 39:300–313

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank by the National Science Foundation of China (No. 51303149) for support. The research was also sponsored by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX201625) and the Natural Science Foundation of Shaanxi Province in China (No.2015JQ2045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuetao Shi or Guangcheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Jing, Z. & Zhang, G. Influence of PLA stereocomplex crystals and thermal treatment temperature on the rheology and crystallization behavior of asymmetric poly(L-Lactide)/poly(D-lactide) blends. J Polym Res 25, 71 (2018). https://doi.org/10.1007/s10965-018-1467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1467-9

Keywords

Navigation