Skip to main content
Log in

Thermal behavior and water absorption kinetics of polylactic acid/chitosan biocomposites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this study, biodegradable polylactic acid (PLA)/chitosan (Cs) composites were produced via melt compounding and compression molding techniques. Various chitosan loadings of 2.5, 5, 7.5 and 10 parts per hundred parts of polymer (php) were incorporated into PLA and its effects on thermal, water absorption kinetics, tensile and morphological characteristics were investigated systematically. Thermal analysis indicated that an increase in chitosan loading of up to 10 php enhanced the crystallinity percentage (χc) of neat PLA to an extent of 51%, yet reduced the thermal stability of the resulting biocomposites. The kinetic study results revealed that water absorption of PLA/Cs biocomposites approached the Fickian diffusion behavior. The maximum water uptake (Msat) increased with chitosan addition, which can be attributed to stronger water–filler interaction. This was correlated to higher diffusion (D), solubility (S) and permeability (P) coefficients, which suggested the acceleration in diffusion rate and better water permeation through the biocomposites. In addition, the tensile results of dry samples showed enhancement in tensile strength and tensile modulus by 2% and 14%, respectively, relative to neat PLA through the incorporation of 2.5 php of chitosan loading. However, the water-immersed biocomposites demonstrated deterioration in all tensile properties (tensile strength, tensile modulus, and elongation-at-break values) which signified hydrolytic polymer degradation. This was confirmed by the FESEM micrographs of the fractured surfaces which exhibited filler pulled-out phenomenon and cavity formation after 50 days of water immersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:768–771

    CAS  PubMed  Google Scholar 

  2. New Straits Times (2020) Report: Malaysians Asia's biggest plastic consumers. https://www.nst.com.my/news/nation/2020/02/566374/report-malaysians-asias-biggest-plastic-consumers. Accessed 9 Mar 2020

  3. Ramasamy S, Ismail H, Munusamy Y (2015) Soil burial, tensile properties, morphology, and biodegradability of (rice husk powder)-filled natural rubber latex foam. J Vinyl Addit Technol 21:128–133

    CAS  Google Scholar 

  4. Cao XV, Ismail H, Rashid AA, Takeichi T, Vo-Huu T (2014) Effect of filler surface treatment on the properties of recycled high-density polyethylene/(natural rubber)/(kenaf powder) biocomposites. J Vinyl Addit Technol 20:218–224

    CAS  Google Scholar 

  5. Han W, Ren J, Xuan H, Ge L (2018) Controllable degradation rates, antibacterial, free-standing and highly transparent films based on polylactic acid and chitosan. Colloid Surface A 541:128–136

    CAS  Google Scholar 

  6. Zaaba NF, Ismail H (2019a) A review on tensile and morphological properties of poly (lactic acid) (PLA)/thermoplastic starch (TPS) blends. Polym Plast Technol Mater 58:1945–1964. https://doi.org/10.1080/25740881.2019.1599941

    Article  CAS  Google Scholar 

  7. Leu YY, Chow WS (2011) Kinetics of water absorption and thermal properties of poly(lactic acid)/organomontmorillonite/poly(ethylene glycol) nanocomposites. J Vinyl Addit Technol 17:40–47

    CAS  Google Scholar 

  8. Frone AN, Berlioz S, Chailan J-F, Panaitescu DM, Donescu D (2011) Cellulose fiber-reinforced polylactic acid. Polym Compos 32:976–985

    CAS  Google Scholar 

  9. Hassan A, Balakrishnan H, Akbari A (2013) In: Thomas S, Visakh PM, Mathew AP (eds) Advances in natural polymers: composites and nanocomposites. Springer, Berlin

  10. Alias NF, Ismail H (2019) An overview of toughening polylactic acid by an elastomer. Polym Plast Technol Mater 58:1399–1422

    CAS  Google Scholar 

  11. Claro PIC, Neto ARS, Bibbo ACC, Mattoso LHC, Bastos MSR, Marconcini JM (2016) Biodegradable blends with potential use in packaging: a comparison of PLA/chitosan and PLA/cellulose acetate films. J Polym Environ 24:363–371

    CAS  Google Scholar 

  12. Zakaria Z, Islam MS, Hassan A, Mohamad Haafiz MK, Arjmandi R, Inuwa IM, Hasan M (2013) Mechanical properties and morphological characterization of PLA/chitosan/epoxidized natural rubber composites. Adv Mater Sci Eng. https://doi.org/10.1155/2013/629092

    Article  Google Scholar 

  13. Bonilla J, Fortunati E, Vargas M, Chiralt A, Kenny JM (2013) Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. J Food Eng 119:236–243

    CAS  Google Scholar 

  14. Ragunathan S, Mustaffa Z, Kamarudin H, Sam ST, Ismail H (2017) The effect of polypropylene maleic anhydride on polypropylene/(recycled acrylonitrile butadiene rubber)/(sugarcane bagasse) composite. J Vinyl Addit Technol 23:228–233

    CAS  Google Scholar 

  15. Zaaba NF, Ismail H (2019b) Effects of natural weathering on the degradation of alkaline-treated peanut shell filled recycled polypropylene composites. J Vinyl Addit Technol 25:26–34. https://doi.org/10.1002/vnl.21655

    Article  CAS  Google Scholar 

  16. Ali F, Awale RJ, Mirghani MES, Anuar H, Samat N (2016) Preparation and characterization of plasticized polylactic acid/starch blend. J Teknol 78:7–12

    Google Scholar 

  17. Zaaba NF, Ismail H (2019c) The influence of different compounding sequence and peanut shell powder loading on properties of polylactic acid/thermoplastic corn starch biocomposites. J Vinyl Addit Technol. https://doi.org/10.1002/vnl.21756

    Article  Google Scholar 

  18. Ismail H, Zaaba NF (2012) Tensile properties, degradation behavior, and water absorption of sago starch plastic films. J Vinyl Addit Technol 8:235–240

    Google Scholar 

  19. Das G, Biswas S (2016) Physical, mechanical and water absorption behaviour of coir fiber reinforced epoxy composites filled with Al2O3 particulates. IOP Conf Ser Mater Sci Eng 115:012012. https://doi.org/10.1088/1757-899X/115/1/012012

    Article  Google Scholar 

  20. Râpă M, Mitelut AC, Tănase EE, Grosu E, Popescu P, Popa ME, Rosnes JT, Sivertsvik M, Darie-Niţă RN, Vasile C (2016) Influence of chitosan on mechanical, thermal, barrier and antimicrobial properties of PLA-biocomposites for food packaging. Compos Part B Eng 102:112–121

    Google Scholar 

  21. Torres-Hernández YG, Ortega-Díaz GM, Téllez-Jurado L, Castrejón-Jiménez NS, Altamirano-Torres A, García-Pérez BE, Balmori-Ramírez H (2018) Biological compatibility of a polylactic acid composite reinforced with natural chitosan obtained from shrimp waste. Materials (Basel) 11:1465. https://doi.org/10.3390/ma11081465

    Article  CAS  PubMed Central  Google Scholar 

  22. Husseinsyah S, Amri F, Husin K, Ismail H (2011) Mechanical and thermal properties of chitosan-filled polypropylene composites: the effect of acrylic acid. J Vinyl Addit Technol 17:125–131

    CAS  Google Scholar 

  23. Correlo VM, Pinho ED, Pashkuleva I, Bhattacharya M, Neves NM, Reis RL (2007) Water absorption and degradation characteristics of chitosan-based polyesters and hydroxyapatite composites. Macromol Biosci 7:354–363

    CAS  PubMed  Google Scholar 

  24. Ismail H, Abdullah AH, Abu Bakar A (2011) Influence of acetylation on the tensile properties, water absorption, and thermal stability of (high-density polyethylene)/(soya powder)/(kenaf core) composites. J Vinyl Addit Technol 17:132–137

    CAS  Google Scholar 

  25. Xu Q, Cui Y, Wang X, Xia Z, Han C, Wang J (2010) Moisture absorption properties of wood-fiber-reinforced recycled polypropylene matrix composites. J Vinyl Addit Technol 16:50–57

    CAS  Google Scholar 

  26. Chung T-J, Park J-W, Lee H-J, Kwon H-J, Kim H-J, Lee Y-K, Tze WTY (2018) The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation. Appl Sci 8:376. https://doi.org/10.3390/app8030376

    Article  CAS  Google Scholar 

  27. Aranda-García FJ, González-Núñez R, Jasso-Gastinel CF, Mendizábal E (2015) Water absorption and thermomechanical characterization of extruded starch/poly(lactic acid)/agave bagasse fiber bioplastic composites. Int J Polym Sci. https://doi.org/10.1155/2015/343294

    Article  Google Scholar 

  28. Móczó J, Kun D, Fekete E (2018) Desiccant effect of starch in polylactic acid composites. eXPRESS Polym Lett 12:1014–1024

    Google Scholar 

  29. Dong Y, Marshall J, Haroosh HJ, Mohammadzadehmoghadam S, Liu D, Qi X, Lau K-T (2015) Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: influence of HNT content and modification. Compos Part A Appl Sci Manuf 76:28–36

    CAS  Google Scholar 

  30. Tham WL, Poh BT, Mohd Ishak ZA, Chow WS (2016) Transparent poly(lactic acid)/halloysite nanotube nanocomposites with improved oxygen barrier and antioxidant properties. J Therm Anal Calorim 126:1331–1337

    CAS  Google Scholar 

  31. Petchwattana N, Sanetuntikul J, Sriromreun P, Narupai B (2017) Wood plastic composites prepared from biodegradable poly(butylene succinate) and Burma padauk sawdust (Pterocarpus macrocarpus): water absorption kinetics and sunlight exposure investigations. J Bionic Eng 14:781–790

    Google Scholar 

  32. Pal AK, Katiyar V (2017) Melt processing of biodegradable poly(lactic acid)/functionalized chitosan nanocomposite films: mechanical modeling with improved oxygen barrier and thermal properties. J Polym Res. https://doi.org/10.1007/s10965-017-1305-5

    Article  Google Scholar 

  33. Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866

    CAS  Google Scholar 

  34. Backes EH, Pires LN, Costa LC, Passador FR, Pessan LA (2019) Analysis of the degradation during melt processing of PLA/biosilicate® composites. J Compos Sci 3:52. https://doi.org/10.3390/jcs3020052

    Article  CAS  Google Scholar 

  35. Tee YB, Talib RA, Abdan K, Chin NL, Basha RK, MdYunos KF (2013) Thermally grafting aminosilane onto kenaf-derived cellulose and its influence on the thermal properties of poly(lactic acid) composites. BioRes 8:4468–4483

    Google Scholar 

  36. Valapa R, Pugazhenthi G, Katiyar V (2014) Thermal degradation kinetics of sucrose palmitate reinforced poly(lactic acid) biocomposites. Int J Biol Macromol 65:275–283

    CAS  PubMed  Google Scholar 

  37. Rodríguez-Núñez JR, Domínguez-López A, Domínguez-López C, Owen PQ, López-Cervantes J, Sánchez-Machado DI, Rodríguez Félix DE, Jatomea MP, Caballero VP, Santana TJM (2017) Evaluation of physicochemical and antifungal properties of polylactic acid–thermoplastic starch–chitosan biocomposites. Polym Plast Technol Eng 56:44–54

    Google Scholar 

  38. Md Zubir NH, Sam ST, Zulkepli NN, Omar MF (2018) The effect of rice straw particulate loading and polyethylene glycol as plasticizer on the properties of polylactic acid/polyhydroxybutyrate-valerate blends. Polym Bull 75:61–76

    Google Scholar 

  39. Muñoz E, García-Manrique J-A (2015) Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. Int J Polym Sci. https://doi.org/10.1155/2015/390275

    Article  Google Scholar 

  40. Cui Z, Beach ES, Anastas PT (2011) Modification of chitosan films with environmentally benign reagents for increased water resistance. Green Chem Lett Rev 4:35–40

    CAS  Google Scholar 

  41. Lukitowati F, Indrani DJ (2018) Water absorption of chitosan, collagen, and chitosan/collagen blend membranes exposed to gamma-ray irradiation. Iran J Pharm Sci 14:57–66

    Google Scholar 

  42. Hosseinihashemi SK, Arwinfar F, Najafi A, Nemli G, Ayrilmis N (2016) Long-term water absorption behavior of thermoplastic composites produced with thermally treated wood. Measurement 86:202–208

    Google Scholar 

  43. Adhikary KB, Pang S, Staiger MP (2008) Long-term moisture absorption and thickness swelling behaviour of recycled thermoplastics reinforced with Pinus radiata sawdust. Chem Eng J 142:190–198

    CAS  Google Scholar 

  44. Witono JR, Noordergraaf IW, Heeres HJ, Janssen LPBM (2014) Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid. Carbohydr Polym 103:325–332

    CAS  PubMed  Google Scholar 

  45. Jena H, Pradhan AK, Pandit MK (2014) Studies on water absorption behavior of bamboo–epoxy composite filled with cenosphere. J Reinf Plast Compos 33:1059–1068

    Google Scholar 

  46. Chen RS, Ab Ghani MH, Salleh MN, Ahmad S, Tarawneh MA (2015) Mechanical, water absorption, and morphology of recycled polymer blend rice husk flour biocomposites. J Appl Polym Sci 132:41494. https://doi.org/10.1002/app.41494

    Article  CAS  Google Scholar 

  47. Priyanka PS (2013) Banana fiber/chemically functionalized polypropylene composites with in-situ fiber/matrix interfacial adhesion by Palsule process. Compos Interface 20:309–329. https://doi.org/10.1080/15685543.2013.799012

    Article  CAS  Google Scholar 

  48. Yu Z, Lau D (2015) Molecular dynamics study on stiffness and ductility in chitin–protein composite. J Mater Sci 50:7149–7157

    CAS  Google Scholar 

  49. Zahari WZW, Badri RNRL, Ardyananta H, Kurniawan D, Nor FM (2015) Mechanical properties and water absorption behavior of polypropylene/ijuk fiber composite by using silane treatment. Proc Manuf 2:573–578

    Google Scholar 

  50. Ghosh R, Ramakrishna A, Reena G, Ravindra A, Verma A (2014) Water absorption kinetics and mechanical properties of ultrasonic treated banana fiber reinforced-vinyl ester composites. Proc Mater Sci 5:311–315

    CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support from the Fundamental Research Grant Scheme (FRGS) under a Grant number of FRGS/1/2018/STG01/UNIMAP/03/3 from the Ministry of Education of Malaysia.

Funding

This work was supported by the Ministry of Education of Malaysia under the Fundamental Research Grant Scheme (FRGS) (FRGS/1/2018/STG01/UNIMAP/03/3).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, main conceptual ideas and design. HI had supervised the project and NHIK conducted the experiment, collected and analyzed the data and wrote the manuscript with consultation and input from all authors. AR assisted in the thermal analysis study and SST helped to perform the water absorption kinetics. All authors have read and commented on the first draft of the manuscript and approved the submitted final version.

Corresponding author

Correspondence to Hanafi Ismail.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamaludin, N.H.I., Ismail, H., Rusli, A. et al. Thermal behavior and water absorption kinetics of polylactic acid/chitosan biocomposites. Iran Polym J 30, 135–147 (2021). https://doi.org/10.1007/s13726-020-00879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00879-5

Keywords

Navigation