Skip to main content
Log in

Conductivity and mechanical properties of carbon black-reinforced poly(lactic acid) (PLA/CB) composites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The effects of carbon black (CB) content on the mechanical properties, hydrophobicity, electrical conductivity, morphology, and thermodynamic properties of the poly(lactic acid) (PLA/CB) composites were studied. The results showed that adding an appropriate amount of CB improved both the mechanical properties and hydrophobicity of PLA, but an excessive addition of CB reduced the mechanical properties of PLA/CB composites. The conductivity test results showed that when CB content was exceeded than12 wt%, there was no significant changes. The results of analyzing the barrier performance showed that less CB content helped to extend the path of water molecules; thus, the water barrier performance was slightly improved. However, CB and PLA had no chemical bonding reaction, thus, the oxygen permeability was greatly increased with increase of the CB content. The XRD results showed that an appropriate amount of CB could improve the crystallinity of PLA. It was shown by scanning electron microscopy (SEM) inspection that when the filler content increased from 4 to 12 wt%, the cross-sections of the PLA/CB composites became wavy and coarser, indicating that the morphology of the PLA/CB composites was gradually changed and became more and more brittle. Thermogravimetric analysis showed that thermal stability of PLA could be improved when CB ≤ 8 wt%. Differential scanning calorimetry (DSC) analysis showed that the glass transition temperature of PLA/CB composites was slightly higher than that of the pure PLA, whereas the melting temperature was slightly lower than that of the pure PLA. This new composite material with optimized CB content showed excellent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang M, Shen Y, Jiang L, Huang Y, Dan Y (2021) Polylactide materials with ultraviolet filtering function by introducing natural compound. Polym-Plast Technol Mater 60:1098–1105

    CAS  Google Scholar 

  2. Latos-Brozio M, Masek A (2021) Environmentally friendly polymer compositions with natural amber acid. Int J Mol Sci 22:1556. https://doi.org/10.3390/ijms22041556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heidari-Asil SA, Zinatloo-Ajabshir S, Amiri O, Salavati-Niasari M (2020) Amino acid assisted-synthesis and characterization of magnetically retrievable ZnCo2O4–Co3O4 nanostructures as high activity visible-light-driven photocatalyst. Int J Hydrog Energy 45:22761–22774

    Article  CAS  Google Scholar 

  4. Mousavi-Kamazani M, Zinatloo-Ajabshir S, Ghodrati M (2020) One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J Mater Sci Mater Electron 31:17332–17338

    Article  CAS  Google Scholar 

  5. Ghodrati M, Mousavi-Kamazani M, Zinatloo-Ajabshir S (2020) Zn3V3O8 nanostructures: facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceram Int 46:28894–28902

    Article  CAS  Google Scholar 

  6. Ashrafi S, Mousavi-Kamazani M, Zinatloo-Ajabshir S, Asghari A (2020) Novel sonochemical synthesis of Zn2V2O7 nanostructures for electrochemical hydrogen storage. Int J Hydrog Energy 45:21611–21624

    Article  CAS  Google Scholar 

  7. Zinatloo-Ajabshir S, Mousavi-Kamazani M (2020) Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram Int 46:26548–26556

    Article  CAS  Google Scholar 

  8. Qian S, Sheng K (2017) PLA toughened by bamboo cellulose nanowhiskers: role of silane compatibilization on the PLA bionanocomposite properties. Compos Sci Technol 148:59–69

    Article  CAS  Google Scholar 

  9. Tsou C-H, Lee H-T, Tsai H-A, Cheng H-J, Suen M-C (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650

    Article  CAS  Google Scholar 

  10. Pelaiz-Barranco A, Marin-Franch P (2005) Piezo-, pyro-, ferro-, and dielectric properties of ceramic/polymer composites obtained from two modifications of lead titanate. J Appl Phys 97:034104. https://doi.org/10.1063/1.1847727

    Article  CAS  Google Scholar 

  11. Casarotti SN, Carneiro BM, Penna ALB (2014) Evaluation of the effect of supplementing fermented milk with quinoa flour on probiotic activity. J Dairy Sci 97:6027–6035

    Article  CAS  PubMed  Google Scholar 

  12. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofbers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  13. Morassaei MS, Zinatloo-Ajabshir S, Salavati-Niasari M (2016) Simple salt-assisted combustion synthesis of Nd2Sn2O7–SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. J Mater Sci Mater Electron 27:11698–11706

    Article  CAS  Google Scholar 

  14. Morassaei MS, Zinatloo-Ajabshir S, Salavati-Niasari M (2016) New facile synthesis, structural and photocatalytic studies of NdOC1-Nd2Sn2O7-SnO2 nanocomposites. J Mol Liq 220:902–909

    Article  CAS  Google Scholar 

  15. Kaiser MR, Anuar HB, Samat NB, Razak SBA (2013) Effect of processing routes on the mechanical, thermal and morphological properties of PLA-based hybrid biocomposite. Iran Polym J 22:123–131

    Article  CAS  Google Scholar 

  16. Zinatloo-Ajabshir S, Zinatloo-Ajabshir Z, Salavati-Niasari M, Bagheri S, Abd Hamid SB (2017) Facile preparation of Nd2Zr2O7-ZrO2 nanocomposites as an effective photocatalyst via a new route. J Energy Chem 26:315–323

    Article  Google Scholar 

  17. Taherian R, Ghorbani MM (2017) Investigation of the electrical properties of polymer/carbon composites exposed to joule heating and heat treatment. ECS J Solid State Sci Technol 6:M3019–M3027

    Article  CAS  Google Scholar 

  18. Wen Y-H, Tsou C-H, De Guzman MR, Wu C-S, Liao B, Du J, Wei W, Sun Y-L (2021) Preparation of antibacterial nanocomposites of zinc oxide-doped graphene reinforced polypropylene with high comprehensive properties. NANO 16:2150026

    Article  CAS  Google Scholar 

  19. Gerard T, Budtova T (2012) Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. Eur Polym J 48:1110–1117

    Article  CAS  Google Scholar 

  20. Kaiser MR, Anuar H, Razak SBA (2014) Improvement in thermomechanical properties of injection molded nano-modified hybrid biocomposite. J Thermoplast Compos Mater 27:992–1009

    Article  CAS  Google Scholar 

  21. Wu C-S, Liao H-T, Tsou C-H (2018) Polyester-based green renewable eco-composites by solar energy tube processing: characterization and assessment of properties. J Polym Res 25:240

    Article  CAS  Google Scholar 

  22. He L, Liu X, Rudd C (2021) Additive-manufactured gyroid scaffolds of magnesium oxide, phosphate glass fiber and polylactic acid composite for bone tissue engineering. Polymers 13:270. https://doi.org/10.3390/polym13020270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koohestani B, Ganetri I, Yilmaz E (2017) Effects of silane modified minerals on mechanical, microstructural, thermal, and rheological properties of wood plastic composites. Compos B 111:103–111

    Article  CAS  Google Scholar 

  24. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  25. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  26. Nguyen TC, Ruksakulpiwat C, Rugmai S, Soontaranon S, Ruksakulpiwat Y (2017) Crystallization behavior studied by synchrotron small-angle x-ray scattering of poly (lactic acid)/cellulose nanofibers composites. Compos Sci Tech 143:106–115

    Article  CAS  Google Scholar 

  27. Wen X, Liu ZQ, Li Z, Zhang J, Wang D-Y, Szymańska K, Chen XC, Mijowska E, Tang T (2020) Constructing multifunctional nanofiller with reactive interface in PLA/CB-g-DOPO composites for simultaneously improving flame retardancy, electrical conductivity and mechanical properties. Compos Sci Technol 188:107988

    Article  CAS  Google Scholar 

  28. Papirer E, Lacroix R, Donnet J-B (1996) Chemical modifications and surface properties of carbon blacks. Carbon 34:1521–1529

    Article  CAS  Google Scholar 

  29. Tsubokawa N (1992) Functionalization of carbon black by surface grafting of polymers. Prog Polym Sci 17:417–470

    Article  CAS  Google Scholar 

  30. Delgado PA, Brutman JP, Masica K, Molde J, Wood B, Hillmyer MA (2016) High surface area carbon black (BP-2000) as a reinforcing agent for poly[(-)-lactic acid]. J Appl Polym Sci 133:43926

    Article  CAS  Google Scholar 

  31. Su ZZ, Li QY, Liu YJ, Guo WH, Wu CF (2010) The nucleation effect of modified carbon black on crystallization of poly(lactic acid). Polym Eng Sci 50:1658–1666

    Article  CAS  Google Scholar 

  32. Wang N, Zhang XX, Ma XF, Fang JM (2008) Influence of carbon black on the properties of plasticized poly(lactic acid) composites. Polym Degrad Stab 93:1044–1052

    Article  CAS  Google Scholar 

  33. López de Dicastillo C, Ares Pernas A, Castro López MM, López Vilariño JM, González Rodríguez MV (2013) Enhancing the release of the antioxidant tocopherol from polypropylene films by incorporating the natural plasticizers lecithin, olive oil, or sunflower oil. J Agric Food Chem 61:11848–11857

    Article  PubMed  CAS  Google Scholar 

  34. Frąckowiak S, Kozlowski M (2014) Influence of filler geometry on melt strength of poly(lactid acid) composites with different electrically conductive fillers. Key Eng Mater 605:449–452

    Article  Google Scholar 

  35. Yu JG, Wang N, Ma XF (2008) Fabrication and characterization of poly(lactic acid)/acetyl tributyl citrate/carbon black as conductive polymer composites. Biomacromol 9:1050–1057

    Article  CAS  Google Scholar 

  36. Yao Y-L, De Guzman MR, Duan H, Gao C, Lin X, Wen Y-H, Du J, Lin L, Chen J-C, Wu C-S, Suen M-C, Sun Y-L, Hung W-S, Tsou C-H (2020) Infusing high-density polyethylene with graphene-zinc oxide to produce antibacterial nanocomposites with improved properties. Chin J Polym Sci 38:898–907

    Article  CAS  Google Scholar 

  37. Kumar A, Tumu VR (2019) Physicochemical properties of the electron beam irradiated bamboo powder and its bio-composites with PLA. Compos Part B Eng 175:107098

    Article  CAS  Google Scholar 

  38. Wen Y, Tsou C-H, Gao C, Chen J-C, Tang Z, Chen Z, Yang T, Du J, Yu Y, Suen M-C, Wu C-S, Hung W-S, Wang R-Y, De Guzman MR (2020) Evaluating distillers grains as bio-fillers for high-density polyethylene. J Polym Res 27:167

    Article  CAS  Google Scholar 

  39. Aliotta L, Cinelli P, Coltelli MB, Righetti MC, Gazzano M, Lazzeri A (2017) Effect of nucleating agents on crystallinity and properties of poly(lactic acid) (PLA). Europ Polym J 93:822–832

    Article  CAS  Google Scholar 

  40. Wang L, Gramlich WM, Gardner DJ (2017) Improving the impact strength of poly(lactic acid) (PLA) in fused layer modeling (FLM). Polymer 114:242–248

    Article  CAS  Google Scholar 

  41. Pan P, Liang Z, Zhu B, Dong T, Inoue Y (2009) Blending effects on polymorphic crystallization of poly(L-lactide). Macromolecules 42:3374–3380

    Article  CAS  Google Scholar 

  42. Qi ZG, Ye HM, Xu J, Peng J, Chen JN, Guo BH (2013) Synthesis and characterizations of attapulgite reinforced branched poly(butylene succinate) nanocomposites. Colloid Surf A Physicochem Eng Asp 436:26–33

    Article  CAS  Google Scholar 

  43. Yang H, Wang J, Yang F, Chen M, Zhou D, Li L (2016) Active packaging films from ethylene vinyl alcohol copolymer and clove essential oil as shelf life extenders for grass carp slice. Packag Technol Sci 29:383–396

    Article  CAS  Google Scholar 

  44. Guo J, Tsou C-H, De Guzman MR, Wu C-S, Zhang X, Chen Z, Wen Y-H, Yang T, Zhuang Y-J, Ge F, Chen Z, Wang Z (2021) Preparation and characterization of bio-based green renewable composites from poly(lactic acid) reinforced with corn stover. J Polym Res 28:199

    Article  CAS  Google Scholar 

  45. Wu C-S, Tsou C-H (2019) Fabrication, characterization, and application of biocomposites from poly(lactic acid) with renewable rice husk as reinforcement. J Polym Res 26:44

    Article  CAS  Google Scholar 

  46. Tsou C-H, Wu C-S, Hung W-S, De Guzman MR, Gao C, Wang R-Y, Chen J, Wan N, Peng Y-J, Suen M-C (2019) Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer 160:265–271

    Article  CAS  Google Scholar 

  47. Tsou C-H, Gao C, De Guzman M, Wu D-Y, Hung W-S, Yuan L, Suen M-C, Yeh J-T (2018) Preparation and characterization of poly(lactic acid) with adipate ester added as a plasticizer. Polym Polym Compos 26:446–453

    CAS  Google Scholar 

  48. Chang HC, Sun T, Sultana N, Lim MM, Khan TH, Ismail AF (2016) Conductive PEDOT:PSS coated polylactide (PLA) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: Fabrication and characterization. Mater Sci Eng C 61:396–410

    Article  CAS  Google Scholar 

  49. Kaiser MR, Anuar H, Razak SBA (2011) Ductile-brittle transition temperature of polylactic acid-based biocomposite. J Therm Compos Mater 26:216–226

    Article  CAS  Google Scholar 

  50. Wu C-P, Wang C-C, Chen C-Y (2015) Influence of asymmetric ratio of polystyrene-block-poly(methyl methacrylate) block copolymer on the crystallization rate of PLA. Eur Polym J 66:160–169

    Article  CAS  Google Scholar 

  51. Lei L, Qiu J, Sakai E (2012) Preparing conductive poly(lactic acid) (PLA) with poly(methyl methacrylate) (PMMA) functionalized graphene (PFG) by admicellar polymerization. Chem Eng J 209:20–27

    Article  CAS  Google Scholar 

  52. Zhang JG, Qiu K, Sun BB, Fang J, Zhang KH, EI-Hamshary H, Al-Deyab SS, Mo XM (2014) The aligned core–sheath nanofibers with electrical conductivity for neural tissue engineering. J Mater Chem B 2: 7945–7954

  53. Li H-Y, Chang C-M, Hsu K-Y, Liu Y-L (2012) Poly(lactide)-functionalized and Fe3O4 nanoparticle-decorated multiwalled carbon nanotubes for preparation of electrically-conductive and magnetic poly(lactide) films and electrospun nanofibers. J Mater Chem 22:4855–4860

    Article  CAS  Google Scholar 

  54. Shen Y, Jing T, Ren W, Zhang JW, Jiang Z-G, Yu Z-Z, Dasari A (2012) Chemical and thermal reduction of graphene oxide and its electrically conductive polylactic acid nanocomposites. Compos Sci Technol 72:1430–1435

    Article  CAS  Google Scholar 

  55. Sabzi M, Jiang L, Liu F, Ghasemi I, Atai M (2013) Graphene nanoplatelets as poly(lactic acid) modifier: linear rheological behavior and electrical conductivity. J Mater Chem A 1:8253–8261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wuliangye Group Co. Ltd. [CXY2019ZR001]; Sichuan Province Science and Technology Support Program [2019JDRC0029]; Zigong City Science and Technology [2017XC16; 2019CXRC01; 2022; 2020YGJC13]; Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province [2017CL03; 2019CL05; 2018CL08; 2018CL07; 2016CL10; 2014CL10; 2020CL19]; Opening Project of Sichuan Province, the Foundation of Introduced Talent of Sichuan University of Science and Engineering [2017RCL31; 2017RCL36; 2017RCL16; 2019RC05; 2019RC07; 2014RC31; 2014RC16; 201510622082; 2020RC16]; the Opening Project of Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities [2020JXY04]. Appreciation is also extended to the National Natural Science Foundation of China; Apex Nanotek Co. Ltd.; Ratchadapisek Sompote Fund for Postoctoral Fellowship (Chulalongkon University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi-Hui Tsou or Manuel Reyes De Guzman.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2292 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Tsou, CH., Yu, Y. et al. Conductivity and mechanical properties of carbon black-reinforced poly(lactic acid) (PLA/CB) composites. Iran Polym J 30, 1251–1262 (2021). https://doi.org/10.1007/s13726-021-00973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00973-2

Keywords

Navigation