Skip to main content
Log in

The Representation of Electrical Conductances for Polyvalent Electrolytes by the Quint–Viallard Conductivity Equation

Part 7. Unsymmetrical 1:2 Type Electrolytes. Alkali Metal (Li, Na, K, Rb and Cs) Sulfates and Ammonium Sulfate

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Electrical conductivities of dilute aqueous solutions of lithium, sodium, potassium, cesium, rubidium and ammonium sulfates were determined and analyzed in terms of partially associated electrolytes of the 1:2 type. The conductivities reported here were determined from 15 to 35 °C and are compared with available literature results. Representation of conductances, in a framework of the ion association model, was performed using the Quint–Viallard conductivity equation and the Debye–Hückel expression for activity coefficients. However, the equilibrium constants were considered as adjustable parameters. Specific conductivities in concentrated aqueous solutions of sulfates were fitted to a new empirical equation with only three adjustable parameters. These parameters at constant temperature are much easier to determine from experimental conductivities than the corresponding four parameters in the usually applied Casteel and Amis conductivity equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Apelblat, A.: The representation of electrical conductances for polyvalent electrolytes by the Quint–Viallard conductivity equation. Part 1. Symmetrical 2:2 type electrolytes. Dilute aqueous solutions of alkaline earth metal sulfates and transition metal sulfates. J. Solution Chem. 40, 1209–1233 (2011)

    Article  CAS  Google Scholar 

  2. Apelblat, A.: The representation of electrical conductances for polyvalent electrolytes by the Quint–Viallard conductivity equation. Part 2. Symmetrical 3:3 type electrolytes. Dilute aqueous solutions of rare earth hexacyanoferrates(III) and hexacyanocobaltates(III). J. Solution Chem. 40, 1724–1734 (2011)

    Article  CAS  Google Scholar 

  3. Apelblat, A.: The representation of electrical conductances for polyvalent electrolytes by the Quint–Viallard conductivity equation. Part 3. Unsymmetrical 3:1, 1:3, 3:2, 4:1, 1:4, 4:2, 2:4, 1:5 1:6 and 6:1 type electrolytes. Dilute aqueous solutions of rare earth salts, various cyanides and other salts. J. Solution Chem. 40, 1291–1316 (2011)

    Article  CAS  Google Scholar 

  4. Apelblat, A.: The representation of electrical conductances for polyvalent electrolytes by the Quint–Viallard conductivity equation. Part 4. Symmetrical 2:2, 3:3 and unsymmetrical 2:1, 3:1 and 1:3 type electrolytes in pure organic solvents. J. Solution Chem. 40, 1234–1257 (2011)

    Article  CAS  Google Scholar 

  5. Apelblat, A.: The representation of electrical conductances for polyvalent electrolytes by the Quint–Viallard conductivity equation. Universal curves of limiting conductances and Walden products of electrolytes in mixed solvents. Part 5. Symmetrical 2:2, 3:3 and unsymmetrical 1:2, 2:1 and 1:3 type electrolytes. J. Solution Chem. 40, 1544–1562 (2011)

    Article  CAS  Google Scholar 

  6. Fisher, F.H., Fox, A.P.: NaS\({\text{O}}_4^{-}\) ion pair in aqueous solutions at pressures up to 2000 atm. J. Solution Chem. 4, 225–235 (1975)

    Article  CAS  Google Scholar 

  7. Chen, C.T.A., Chen, J.H., Millero, F.J.: Densities of sodium chloride, magnesium chloride, sodium sulfate, and magnesium sulfate aqueous solutions at 1 atm. From 0 to 50° and from 0.001 to 1.5 m. J. Chem. Eng. Data 25, 307–310 (1980)

    Article  CAS  Google Scholar 

  8. Bhatnagar, O.N., Campbell, A.N.: Osmotic and activity coefficients of sodium sulphate in water from 150 to 250 °C. Can. J. Chem. 60, 1754–1758 (1982)

    Article  CAS  Google Scholar 

  9. Isono, T.: Density, viscosity, and electrical conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, LaCl3, Na2SO4, NaNO3, NaBr, KNO3, KBr and Cd(NO3)2. J. Chem. Eng. Data 29, 45–52 (1984)

    Article  CAS  Google Scholar 

  10. Maksimova, I.N., Pak, C.S., Pravdin, N.N., Razuvaev, V.E., Sergeev, S.V., Ustinov, Y.N.: Physicochemical properties of electrolyte solutions over a wide range of temperatures and concentrations. Deposited Doc. VINITI 4113–4184 (1984)

  11. Phutela, R.C., Pitzer, K.S.: Densities and apparent molar volumes of aqueous magnesium sulfate and sodium sulfate to 473 K and 100 bar. J. Chem. Eng. Data 31, 320–327 (1986)

    Article  CAS  Google Scholar 

  12. Holmes, H.F., Mesmer, R.E.: Thermodynamics of aqueous solutions of the alkali metal sulfates. J. Solution Chem. 15, 495–518 (1986)

    Article  CAS  Google Scholar 

  13. Lobo, V.M.M.: Electrolyte Solutions. Literature Data on Thermodynamic and Transport Properties. Physical Science Data Series 41. Elsevier, Amsterdam (1990)

  14. Obšil, M., Majer, V., Hefter, G.T., Hynek, V.: Densities and apparent molar volumes of Na2SO4(aq) and K2SO4(aq) at temperatures from 298 K to 573 K and at pressures up to 30 MPa. J. Chem. Eng. Data 42, 137–142 (1997)

    Article  Google Scholar 

  15. Hnedkovsky, L., Wood, R.H., Balashov, V.N.: Electrical conductances of aqueous Na2SO4, H2SO4 and their mixtures. Limiting equivalent ion conductances, dissociation constants, and speciation to 673 K and 28 MPa. J. Phys. Chem. B 109, 9034–9046 (2005)

    Article  CAS  Google Scholar 

  16. Mantegazzi, D., Sanchez-Valle, C., Reusser, E., Driesner, T.: Thermodynamic properties of aqueous sodium sulfate solutions to 773 K and 3 GPa derived from acoustic velocity measurements in the diamond anvil cell. J. Chem. Phys. 137, 224501–2245012 (2012)

    Article  Google Scholar 

  17. Kohlrausch, F., Holborn, L.: Das Leitvermögen der Elektolyte. Insbesondere der Lösungen. Methoden, Resultate und Chemische Anwendungen. Druck und Verlag von B.G. Teubner, Leipzig, (1889)

  18. Jones, H.C.: The electrical conductivity, dissociation and temperature coefficient of conductivity (from zero to sixty-five degrees) of aqueous solutions of a number of salts and organic acids. Carnegie Institution of Washington, Publ. No. 170, pp. 48–49 (1912)

  19. Fedoroff, B.: Contribution a l’étude des sulfates simple et double de quelques métaux de la série magnésienne. Ann. Chim. Appl. 16, 155–214 (1941)

    Google Scholar 

  20. Jenkins, I.L., Monk, C.B.: The conductance of sodium, potassium and lanthanum sulfates at 25 °C. J. Am. Chem. Soc. 72, 2695–2698 (1950)

    Article  CAS  Google Scholar 

  21. Indelli, A.: Misure crioscopiche sulle soluzioni acquose dei sulfati di litio, sodio e potassio. Ric. Sci. 23, 2258–2266 (1953)

    CAS  Google Scholar 

  22. Broadwater, T.L., Evans, D.F.: The conductance of divalent ions in H2O at 10 and 25 °C and in D2O. J. Solution Chem. 3, 757–769 (1974)

    Article  CAS  Google Scholar 

  23. Valyashko, V.M., Ivanov, A.A.: Electrical conductivity of alkali metal sulfates at 75 °C. Zhurn. Neorg. Khim. 19, 2978–2983 (1974)

    CAS  Google Scholar 

  24. Sharygin, A.V., Grafton, B.K., Xiao, C., Wood, R.H.: Conductance of aqueous solutions of potassium sulfate and lithium sulfate at elevated temperatures. In: Tremaine, P.R., Hill, P.G., Irish, D.E., Balakrishnan, P. (eds.) Steam, Water, and Hydrothermal Systems. NRC Research Press, Ottawa (2000)

    Google Scholar 

  25. Cartón, A., Sobrón, F., Bolado, S., Gerbolés, J.L.: Density, viscosity, and electrical conductivity of aqueous solutions of lithium sulfate. J. Chem. Eng. Data 40, 987–991 (1995)

    Article  Google Scholar 

  26. Fisher, F.H., Fox, A.P.: KS\({\text{O}}_4^{-}\), Na\({\text{O}}_4^{-}\), and MgCl+ ion pairs in aqueous solutions up to 2000 atm. J. Solution Chem. 6, 641–649 (1977)

    Article  CAS  Google Scholar 

  27. Fisher, F.H., Fox, A.P.: LiS\({\text{O}}_4^{-}\), RbS\({\text{O}}_4^{-}\), CsSO\({\text{O}}_4^{-}\), and (NH4)S\({\text{O}}_4^{-}\) ion pairs in aqueous solutions up to 2000 atm. J. Solution Chem. 7, 561–570 (1978)

    Article  CAS  Google Scholar 

  28. Vasin, S.K., Aleshko-Ozhevskii, Y.P., Klement’eva, I.I.: Ionic association in aqueous solutions of alkali metal sulfates III. M2SO4 + H2O solutions. Zhurn. Fiz. Khim. 54, 1884–1888 (1980)

  29. Pak, C.S., Maksimova, I.N.: Some regularities in changes in density, viscosity and electrical conductivity of solutions of alkali metal salts. Zhurn. Fiz. Khim. 59, 1265–1269 (1985)

    CAS  Google Scholar 

  30. Lee, W.H., Wheaton, R.J.: Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 1.—Relaxation terms. J. Chem. Soc., Faraday Trans. 2 74, 743–766 (1978)

    Article  Google Scholar 

  31. Lee, W.H., Wheaton, R.J.: Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 2.—Hydrodynamic terms and complete conductance equation. J. Chem. Soc., Faraday Trans. 2 74, 1456–1482 (1978)

    Article  Google Scholar 

  32. Quint, J., Viallard, A.: Relaxation field for the general case of electrolyte mixtures. J. Solution Chem. 7, 137–153 (1978)

    Article  CAS  Google Scholar 

  33. Quint, J., Viallard, A.: The electrophoretic effect for the case of electrolyte mixtures. J. Solution Chem. 7, 525–531 (1978)

    Article  CAS  Google Scholar 

  34. Quint, J., Viallard, A.: Electrical conductance of electrolyte mixtures of any type. J. Solution Chem. 7, 533–548 (1978)

    Article  CAS  Google Scholar 

  35. Quint, J.: Contribution a l’étude de la conductibilité électrique de mélanges d’électrolytes. PhD. Thesis, University of Clermont-Ferrand, April (1976)

  36. Apelblat, A., Weintraub, R., Tamir, A.: Enthalpy of solution of lithium chloride and of lithium chloride monohydrate in water. J. Chem. Thermodyn. 116, 935–941 (1984)

    Article  Google Scholar 

  37. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn, pp. 425–429. Butterworths, London (1965)

    Google Scholar 

  38. Orekhova, Z., Ben-Hamo, M., Manzurola, E., Apelblat, A.: Electrical conductance and volumetric studies in aqueous solutions of nicotinic acid. J. Solution Chem. 34, 688–700 (2005)

    Google Scholar 

  39. Apelblat, A., Neueder, R., Barthel, J.: Electrolyte Data Collection. Electrolyte Conductivities and Dissociation Constants of Aqueous Solution of Organic Dibasic and Tribasic Acids, vol. XII, Part 4c. Dechema Chemistry Data Series. Frankfurt (2006)

  40. Kielland, J.: Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678 (1937)

    Article  CAS  Google Scholar 

  41. Apelblat, A.: Dissociation constants and limiting conductances of organic acids in water. J. Mol. Liquids 95, 99–145 (2002)

    Article  CAS  Google Scholar 

  42. Postler, M.: Conductance of concentrated aqueous solutions of electrolytes. Coll. Czech. Chem. Commun 33, 2244–2249 (1970)

    Article  Google Scholar 

  43. Pavlova, V.V., Poluden, R.I., Tolsaya, M.A.: Study of the electrical conductivity of concentrated solutions of some alkali metal carbonates and sulfates in the 20–80 °C range. Izv. Vyss. Uczeb. Zaved., Khim. Khim Tekhnol. 19, 862–864 (1976)

  44. Timmermans, J.: The Physico-chemical Constants of Binary Systems in Concentrated Solutions, vol. 3. Systems with Metallic Compounds. Interscience Publ. Inc., New York (1960)

    Google Scholar 

  45. Vivo, A., Esteso, M.A., Llorente, M.L.: Electrolytic conductance of ethanol–water mixtures. III. Limiting conductivity of sodium sulphate at mixtures. Ann. Quimica 77, 204–208 (1981)

  46. Hartley, G.S., Donaldson, G.W.: Transport numbers of unsymmetrical electrolytes and a simplified moving boundary apparatus. Trans. Faraday Soc. 33, 457–469 (1937)

    Article  CAS  Google Scholar 

  47. Shilovskaya, M.E., Poluden, R.I., Lenkova, V.I.: Determination of the electrical conductivity of concentrated solutions of some salts in the 20–80 °C range. Teploenergetica (Moscow) 3, 92–93 (1974)

    Google Scholar 

  48. Scatchard, G., Prentiss, S.S.: The freezing points of aqueous solutions. III Ammonium chloride, bromide, iodide, nitrate and sulfate. J. Am. Chem. Soc. 54, 2696–2705 (1932)

  49. Isono, T.: Densities, viscosities, and electrical conductivities of concentrated aqueous solutions of 31 solutes in the temperature range 15–55 °C and empirical equations for the relative viscosity. Rikagaku Kenkyusho Hokoku 61, 53–79 (1985)

    Google Scholar 

  50. Kortüm, G. Treatise on Electrochemistry. Sec. Rev. Ed., Elsevier Publ. Co., Amsterdam (1965)

  51. Righellato, E.C., Davies, C.W.: The extent of dissociation of salts. Part II. Uni-bivalent salts. Trans. Faraday Soc. 26, 592–600 (1930)

    Article  CAS  Google Scholar 

  52. Reardon, E.R.: Dissociation constants of some monovalent sulfate ion pairs at 25 °C from stoichiometric activity coefficients. J. Phys. Chem. 79, 422–425 (1975)

    Article  CAS  Google Scholar 

  53. Casteel, J.F., Amis, E.S.: Specific conductances of concentrated solutions of magnesium salts in water–ethanol system. J. Chem. Eng. Data 17, 55–59 (1972)

    Article  CAS  Google Scholar 

  54. Barthel, J.M.G., Krienke, H., Kunz, W.: Physical Chemistry of Electrolyte Solutions. Modern Aspects. Springer, Darmstadt (1998)

    Google Scholar 

  55. Angel, C.A.: On the importance of metastable liquid state and glass-transition phenomenon to transport and structure studies in ionic liquids. I. Transport properties. J. Phys. Chem. 70, 2793–2803 (1966)

    Article  Google Scholar 

  56. Angel, C.A.: Free volume–entropy interpretation of the electrical conductance of aqueous electrolyte solutions in the concentration range 2–20 N. J. Phys. Chem. 70, 3988–3998 (1966)

    Article  Google Scholar 

  57. Angel, C.A.: Fluidity and conductance in aqueous solutions. An approach from the glassy state and high-concentration limit. I. Ca(NO3)2. J. Phys. Chem. 76, 3244–3253 (1972)

    Article  Google Scholar 

Download references

Acknowledgements

Technical assistance of Paulina Veinner is very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Apelblat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apelblat, A. The Representation of Electrical Conductances for Polyvalent Electrolytes by the Quint–Viallard Conductivity Equation. J Solution Chem 46, 103–123 (2017). https://doi.org/10.1007/s10953-016-0556-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0556-9

Keywords

Navigation