Skip to main content
Log in

Representation of Electrical Conductances for Polyvalent Electrolytes by the Quint-Viallard Conductivity Equation. Universal Curves of Limiting Conductances and Walden Products of Electrolytes in Mixed Solvents. Part 5. Symmetrical 2:2, 3:3 and Unsymmetrical 1:2, 2:1 and 1:3 Type Electrolytes

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Conductivities of symmetrical and unsymmetrical electrolytes of 2:2, 3:3, 1:2, 2:1 and 1:3 types in ethanol–water and the 1,4-dioxane–water mixtures were analyzed using the Quint-Viallard conductivity equation and taking into account the ion association effect. The molar limiting conductances and the ion association constants were reexamined for various multivalent electrolytes. One non-aqueous system, methanol–ethylene glycol mixtures, was also considered. The limiting conductances were also examined in the framework of universal curves of limiting conductances and the excess Walden products introduced by the author. These new concepts in the analysis of conductance data allow the estimation of values of limiting conductances of electrolytes or ions, to give an indication about the quality of the conductivity measurements and the type of interactions expected in the systems. It was found that for any type of electrolyte only one universal curve of limiting conductances exists. In the water-rich mixtures, attractive interactions (structure-making effects) are expected when electrolytes are added to mixtures with ethanol or with 1,4-dioxane. In contrast, in ethylene glycol–methanol-rich mixtures repulsive interactions (structure-breaking effects) are more likely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, W.H., Wheaton, R.J.: Conductance of symmetrical. unsymmetrical and mixed electrolytes. Part 1.—Relaxation terms. J. Chem. Soc. Faraday Trans. II 74, 743–766 (1978)

    Article  CAS  Google Scholar 

  2. Lee, W.H., Wheaton, R.J.: Conductance of symmetrical. unsymmetrical and mixed electrolytes. Part 2.—Hydrodynamic terms and complete conductance equation. J. Chem. Soc. Faraday Trans. II 74, 1456–1482 (1978)

    Article  CAS  Google Scholar 

  3. Quint, J., Viallard, A.: Relaxation field for the general case of electrolyte mixtures. J. Solution Chem. 7, 137–153 (1978)

    Article  CAS  Google Scholar 

  4. Quint, J., Viallard, A.: The electrophoretic effect for the case of electrolyte mixtures. J. Solution Chem. 7, 525–531 (1978)

    Article  CAS  Google Scholar 

  5. Quint, J., Viallard, A.: Electrical conductance of electrolyte mixtures of any type. J. Solution Chem. 7, 533–548 (1978)

    Article  CAS  Google Scholar 

  6. Quint, J.: Contribution a l’étude de la conductibilité électrique de mélanges d’électrolytes. Ph.D. Thesis, University of Clermont-Ferrand, April (1976)

  7. Apelblat, A.: Limiting conductances of electrolytes and the Walden product in mixed solvents in a phenomenological approach. J. Phys. Chem. B 112, 7032–7044 (2008)

    Article  CAS  Google Scholar 

  8. Niazi, M.S.K., Hussain, M.: Conductivities and ionic association of copper(II) and manganese(II) sulfates in ethanol + water at 298.15 K. J. Chem. Eng. Data 39, 48–49 (1994)

    Article  CAS  Google Scholar 

  9. Kielland, J.: Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678 (1937)

    Article  CAS  Google Scholar 

  10. Barthel, J.M.G., Krienke, H., Kunz, W.: Physical Chemistry of Electrolyte Solutions. Modern Aspects. Springer, Darmstadt (1998)

    Google Scholar 

  11. Bateman, R.L., Ewing, D.T.: The electrical conductance of strontium chloride and strontium bromide in ethanol–water mixtures. J. Am. Chem. Soc. 70, 2137–2140 (1948)

    Article  CAS  Google Scholar 

  12. Than, A., Amis, E.S.: The equivalent conductance of electrolytes in mixed solvent. XI. The equivalent conductance (Λ) of magnesium chloride in the water-ethanol system. Z. Phys. Chem. 58, 196–205 (1968)

    Article  CAS  Google Scholar 

  13. Srour, R.K., McDonald, L.M.: Ionic conductivity of selected 2:1 electrolytes in mixed aqueous–organic solvents at 298.15 K. J. Chem. Eng. Data 53, 335–342 (2008)

    Article  CAS  Google Scholar 

  14. James, J.C.: The electrolytic dissociation of zinc sulphate, copper sulphate, and zinc malonate in mixed solvents. J. Chem. Soc. 153–157 (1951)

  15. Szimizu, K., Tsuchihashi, N., Ikemoto, K.: Effect of pressure on electrolytic conductance of cupric sulfate in ethanol–water mixtures. Sci. Eng. Rev. Doshisha Univ. 22, 7–12 (1981)

    Google Scholar 

  16. Vivo, A., Esteso, M.A., Llorente, M.L., Dominguez, B.: Conductividades en medios aqua–etanol. IV. Conductividad limito del MgSO4 a 25 °C. An. Quim. 77, 209–213 (1981)

    CAS  Google Scholar 

  17. Vivo, A., Esteso, M.A., Llorente, M.L.: Conductividades en medios aqua-etanol. III. Conductividad limito del Na2SO4 a 25 °C. An. Quim. 77, 204–208 (1981)

    CAS  Google Scholar 

  18. James, J.C.: The electrolytic dissociation of lanthanum ferricyanide in mixed solvents. J. Chem. Soc. 1094–1097 (1950)

  19. Amis, E.S., Casteel, J.F.: The equivalent conductance of electrolytes in mixed solvent. XII. Magnesium sulfate in water–ethanol solvents. J. Electrochem. Soc. 117, 213–218 (1970)

    Article  CAS  Google Scholar 

  20. Kay, R.L., Broadwater, T.L.: Solvent structure in aqueous mixtures. III. Ionic conductances in ethanol–water mixtures at 10 and 25 °C. J. Solution Chem. 5, 57–76 (1976)

    Article  CAS  Google Scholar 

  21. Dunsmore, H.S., Kelly, T.R., Nancollas, G.H.: Electrochemical studies in the rare earth series. Part 3. Conductances of some 3-3 electrolytes in water and dioxane + water. Trans. Faraday Soc. 59, 2606–2611 (1963)

    Article  CAS  Google Scholar 

  22. Dunsmore, H.S., James, J.C.: The electrolytic dissociation of magnesium sulphate and lanthanum ferricyanide in mixed solvents. J. Chem. Soc. 2925–2930 (1951)

  23. Atkinson, G., Hallada, C.J.: Ion association in polyvalent symmetrical electrolytes. IV. The conductance of MnSO4 and MnBDS in dioxane–water mixtures. J. Am. Chem. Soc. 84, 721–724 (1962)

    Article  CAS  Google Scholar 

  24. Masterton, W.L., Bierly, T.: Ion association in 2:2 complex ion electrolytes: [Co(NH3)5NO2]SO4 in water–dioxane mixtures. J. Solution Chem. 5, 721–731 (1976)

    Article  CAS  Google Scholar 

  25. Bešter-Rogač, M., Hauptman, N., Barthel, J.: Conductometric study of ion association of divalent symmetric electrolytes. II. MgSO4 in water + 1,4-dioxane mixtures. J. Mol. Liq. 131–132, 29–35 (2007)

    Google Scholar 

  26. Atkinson, G.: Ion association in polyvalent symmetrical electrolytes. I. Conductances of several rare earth hexacyanocobaltates(III) in dioxane–water mixtures. J. Am. Chem. Soc. 82, 818–820 (1960)

    Article  CAS  Google Scholar 

  27. Hafez, A.M., Osman, M.M., El-Kholy, M.M.: Electrical conductance of some transition metal complexes in both water and dioxane–water mixtures at 25 °C. Electrochim. Acta 30, 541–549 (1985)

    Article  CAS  Google Scholar 

  28. Kay, R.L., Broadwater, T.L.: Solvent structure in aqueous mixtures. I. Ionic mobilities in dioxane–water mixtures at 25 °C. Electrochim. Acta 16, 667–678 (1971)

    Article  CAS  Google Scholar 

  29. Fratiello, A., Kay, R.L.: Transference numbers for KCl in ethanol–water and dioxane–water mixtures at 25 °C. J. Solution Chem. 3, 857–864 (1974)

    Article  CAS  Google Scholar 

  30. Perif, M., Perif, J., Chemla, M.: Mesure des nombres de transport des ions Cs+ et Br en milieu eau–dioxanne a l’aide de radiotraceurs. Electrochim. Acta 21, 739–744 (1976)

    Article  Google Scholar 

  31. Apelblat, A.: A new look on the representation of electrical conductivities in mixed solvents. The universal curves of limiting conductances of electrolytes and the modified and the excess Walden products. Acta Chim. Slov. 56, 1–17 (2009)

    CAS  Google Scholar 

  32. Doe, H., Kitagawa, T.: Conductometric study of cobalt(II), nickel(II), copper(II), and zinc(II) perchlprates in methanol–ethylene glycol mixtures. Bull. Chem. Soc. Jpn. 58, 2975–2980 (1985)

    Article  CAS  Google Scholar 

  33. Doe, H., Ohe, H., Matoba, H., Ishimura, A., Kitagawa, T.: Conductometric study of calcium(II), strontium(II), and barium(II) perchlorates in methanol–ethylene glycol mixtures. Bull. Chem. Soc. Jpn. 63, 2785–2789 (1985)

    Article  Google Scholar 

  34. Roy, M.N., Pradhan, P., Dewan, R.: Study on ion-solvent interactions of alkali metal salts in pure methanol and its binary mixtures with ethane-1,2-diol by a conductometric technique. Fluid Phase Equilib. 282, 51–57 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Apelblat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apelblat, A. Representation of Electrical Conductances for Polyvalent Electrolytes by the Quint-Viallard Conductivity Equation. Universal Curves of Limiting Conductances and Walden Products of Electrolytes in Mixed Solvents. Part 5. Symmetrical 2:2, 3:3 and Unsymmetrical 1:2, 2:1 and 1:3 Type Electrolytes. J Solution Chem 40, 1544–1562 (2011). https://doi.org/10.1007/s10953-011-9741-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9741-z

Keywords

Navigation