Skip to main content
Log in

Magnetic and Thermoelectric Properties of Mn2CoGe and Mn2CoSb

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Heusler compounds stand as a versatile class of intermetallics with extraordinary electrical, magnetic, and thermoelectric properties that render them indispensable in various applications. This study delves deeply into the mechanical, dynamical, electronic, magnetic, and transport characteristics of Mn\(_2\)CoGe and Mn\(_2\)CoSb compounds. Both compounds display mechanical stability, ionic bonding, and a ductile nature. The positive phonon frequencies further affirm their dynamical stability. Moving to the electronic structure calculations, our assessments encompass magnetic moment, band structure, and density of states, highlighting the distinctive half-metallic characteristics inherent in these compounds. Transport coefficient calculations for both spin channels demonstrate the compounds’ relative constancy in terms of Seebeck coefficient and electrical conductivity despite temperature fluctuations. The observed spin polarisation and thermoelectric response underscore the promising suitability of these compounds for future applications in spintronics and thermoelectrics. While the achieved maximum thermoelectric figure of merit value of 0.2 holds potential for their thermoelectric capabilities, further experimental validations are imperative for a comprehensive evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data supporting the findings of this study are available upon reasonable request from the authors.

References

  1. Casper, F., Graf, T., Chadov, S., Balke, B., Felser, C.: Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond. Sci. Technol. 27(6), 063001 (2012)

    Article  ADS  Google Scholar 

  2. Zhang, W.Y., Skomski, R., Valloppilly, S.R., Khatri, Y., Kashyap, A., Sellmyer, D.J.: Magnetism and structure of Fe- and Co-substituted Mn2NiSn. J. Magn. Magn. Mater. 537, 168157 (2021)

    Article  Google Scholar 

  3. Fowley, C., Ouardi, S., Kubota, T., Yildirim, O., Neudert, A., Lenz, K., Sluka, V., Lindner, J., Law, J.M., Mizukami, S., Fecher, G.H., Felser, C., Deac, A.M.: Direct measurement of the magnetic anisotropy field in Mn-Ga and Mn-Co-Ga Heusler films. J. Phys. D 48(16), 164006 (2015)

    Article  ADS  Google Scholar 

  4. Galanakis, I., Mavropoulos, P.H.: Spin-polarization and electronic properties of half-metallic Heusler alloys calculated from first principles. J. Phys. Condens. Matter 19, 315213 (2007)

    Article  ADS  Google Scholar 

  5. Gui, Z., Wang, G., Wang, H., Zhang, Y., Li, Y., Wen, X., Li, Y., Peng, K., Zhou, X., Ying, J., Chen, X.: Large improvement of thermoelectric performance by magnetism in co-based full-Heusler alloys. Adv. Sci. 10(28), 2303967 (2023)

    Article  Google Scholar 

  6. Gercsi, Z., Rajanikanth, A., Takahashi, Y.K., Hono, K., Kikuchi, M., Tezuka, N., Inomata, K.: Spin polarization of Co2FeSi full-Heusler alloy and tunneling magnetoresistance of its magnetic tunneling junctions. Appl. Phys. Lett. 89, 082512 (2006)

    Article  ADS  Google Scholar 

  7. Li, H., Hayashi, K., Nagashima, Y., Yoshioka, S., Dong, J., Li, J.-F., Miyazaki, Y.: Effects of disorder on the electronic structure and thermoelectric properties of an inverse full-Heusler Mn2CoAl Alloy. Chem. Mater. 33(7), 2543–2547 (2021)

    Article  Google Scholar 

  8. Mokhtari, D.J., Jum’h, I., Baaziz, H., Charifi, Z., Ghellab, T., Telfah, A., Hergenröder, R.: Structural, electronic, magnetic and thermoelectric properties of inverse Heusler alloys Ti2CoSi, Mn2CoAl and Cr2ZnSi by employing Ab initio calculations. Phil. Mag. 100(12), 1636–1661 (2020)

    Article  ADS  Google Scholar 

  9. Ouardi, S., Fecher, G.H., Felser, C., Kübler, J.: Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl. Phys. Rev. Lett. 110, 100401 (2013)

    Article  ADS  Google Scholar 

  10. Yang, Y.: Mini-review of interesting properties in Mn2CoAl bulk and films. Front. Chem. 10 (2022)

  11. Zou, T., Jia, T., Xie, W., Zhang, Y., Widenmeyer, M., Xiao, X., Weidenkaff, A.: Band structure modification of the thermoelectric Heusler-phase TiFe2Sn via Mn substitution. Phys. Chem. Chem. Phys. 19(28), 18273–18278 (2017)

    Article  Google Scholar 

  12. Mena, J.M., Schoberth, H.G., Gruhn, T., Emmerich, H.: Nanophase separation in CoSb-based half-Heusler thermoelectrics: a multiscale simulation study. Physica Status Solidi (a) 213(3), 706–715 (2016)

    Article  ADS  Google Scholar 

  13. Patel, P.D., Pillai, S.B., Shinde, S.M., Gupta, S.D., Jha, P.K.: Electronic, magnetic, thermoelectric and lattice dynamical properties of full Heusler alloy Mn2RhSi: DFT study. Phys. B Condens. Matter 550, 376–382 (2018)

    Article  ADS  Google Scholar 

  14. Patel, P.D., Pandya, J.B., Shinde, S.M., Gupta, S.D., Narayan, S., Jha, P.K.: Investigation of full-Heusler compound Mn2MgGe for magnetism, spintronics and thermoelectric applications: DFT study. Comput. Condens. Matter 23 (2020)

  15. Patel, P.D., Shinde, S.M., Gupta, S.D., Jha, P.K.: A promising thermoelectric response of fully compensated ferrimagnetic spin gapless semiconducting Heusler alloy Zr2MnAl at high temperature: DFT study. Mater. Res. Express 6, 076307 (2019)

    Article  ADS  Google Scholar 

  16. Patel, P.D., Shinde, S.M., Gupta, S.D., Dabhi, S.D., Jha, P.K.: The first principle calculation of structural, electronic, magnetic, elastic, thermal and lattice dynamical properties of fully compensated ferrimagnetic spin-gapless heusler alloy Zr2MnGa. Comput. Condens. Matter 15, 61–68 (2018)

    Article  Google Scholar 

  17. Liu, G.D., Dai, X.F., Liu, H.Y., Chen, J.L., Li, Y.X., Xiao, G., Wu, G.H.: Mn2CoZ (Z=Al, Ga, In, Si, Ge, Sn, Sb)compounds: structural, electronic, and magnetic properties. Phys. Rev. B 77, 14424 (2008)

    Article  ADS  Google Scholar 

  18. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558(R) (1993)

    Article  ADS  Google Scholar 

  19. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Article  Google Scholar 

  20. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  21. Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.B.: Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990)

    Article  ADS  Google Scholar 

  22. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. Becke, D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006)

    Article  ADS  Google Scholar 

  24. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  25. Togo, A., Tanaka, I.: First principles phonon calculations in materials science. Scripta Mater. 108, 1–5 (2015)

    Article  ADS  Google Scholar 

  26. Gonze, X., Lee, C.: Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355 (1997)

    Article  ADS  Google Scholar 

  27. Madsen, G.K.H., Singh, D.J.: BoltzTraP A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(1), 67–71 (2006)

    Article  ADS  Google Scholar 

  28. Scheidemantel, T.J., Ambrosch-Draxl, C., Thonhauser, T., Badding, J.V., Sofo, J.O.: Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210 (2003)

    Article  ADS  Google Scholar 

  29. Jodin, L., Tobola, J., Pecheur, P., Scherrer, H., Kaprzyk, S.: Effect of substitutions and defects in half-Heusler FeVSb studied by electron transport measurements and KKR-CPA electronic structure calculations. Phys. Rev. B 70, 184207 (2004)

    Article  ADS  Google Scholar 

  30. Chaput, L., Pécheur, P., Tobola, J., Scherrer, H.: Transport in doped skutterudites: Ab initio electronic structure calculations. Phys. Rev. B 72, 085126 (2005)

    Article  ADS  Google Scholar 

  31. Mouhat, F., Coudert, F.-X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90 (2014)

  32. Kholil, M.I., Bhuiyan, M.T.H.: Physical properties of spinel-type superconductors CuRh2S4 and CuRh2Se4: A DFT study. Results Phys. 12, 73–82 (2019)

    Article  ADS  Google Scholar 

  33. Xiang, H.J., Singh, D.J.: Suppression of thermopower of NaxCoO2 by an external magnetic field: Boltzmann transport combined with spin-polarized density functional theory. Phys. Rev. B 76, 195111 (2007)

    Article  ADS  Google Scholar 

  34. Hayashi, K., Eguchi, M., Miyazaki, Y.: Structural and thermoelectric properties of ternary full-Heusler alloys. J. Electron. Mater. 46, 2710–2716 (2017)

    Article  ADS  Google Scholar 

  35. Hayashi, K., Li, H., Eguchi, M., Nagashima, Y., Miyazaki, Y.: Magnetic materials and magnetic levitation p. 65 (2020)

  36. Dhakal, C., Aryal, S., Sakidja, R., Ching, W.: Approximate lattice thermal conductivity of MAX phases at high temperature. J. Eur. Ceram. Soc. 35(12), 3203–3212 (2015)

    Article  Google Scholar 

  37. Hori, A., Minami, S., Saito, M., Ishii, F.: First-principles calculation of lattice thermal conductivity and thermoelectric figure of merit in ferromagnetic half-Heusler alloy CoMnSb. Appl. Phys. Lett. 116, 242408 (2020)

    Article  ADS  Google Scholar 

  38. Mohankumar, R., Ramasubramanian, S., Rajagopalan, M., Manivel Raja, M., Kamat, S.V., Kumar, J.: Effect of Fe substitution on the electronic structure, magnetic and thermoelectric properties of Co2FeSi full Heusler alloy: a first principle study. Comput. Mater. Sci. 109, 34–40 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank IIT Hyderabad and the National Supercomputing Mission (NSM) for providing computing resources for ‘PARAM SEVA’ at IIT, Hyderabad, which is implemented by C-DAC and supported by the Government of India’s Ministries of Electronics and Information Technology (MeitY) and Science and Technology (DST). Sushree Sarita Sahoo and V Kanchana would like to acknowledge CSIR project with sanction No. (03(1433)/18/EMR-II) for financial support. The authors would like to express their gratitude to the projects BRNS Project with Sanction No. (58/14/13/2019-BRNS) and DST-FIST (SR/FST/PSI-215/2016) for their financial assistance. Arul Raj Natarajan would like to thank CSIR for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kanchana.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.S., Raj Natarajan, A. & Kanchana, V. Magnetic and Thermoelectric Properties of Mn2CoGe and Mn2CoSb. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06751-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06751-4

Keywords

Navigation