Skip to main content
Log in

The half-metallic ferromagnetic and thermoelectric responses of the potential thermo-spintronic compounds CrTiRhZ (Z: Al or Si) QHA

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We employed the full-potential linearized augmented plane wave (FP-LAPW) approach to estimate the stability, magneto-electronic, and thermoelectric properties of CrTiRhZ (Z: Al, Si) quaternary Heusler alloys (QHAs) using different exchange–correlation approximations, namely Generalized Gradient Approximation (GGA) and Modified Becke-Johnson (GGA-mBJ), to improve the results. Structural and phonon dispersion calculations both confirm that the mentioned QHAs stabilize in a cubic structure within the type-I phase. Elastic data indicate that QHAs are mechanically stable and inherently ductile. We also described the half-metallic ferromagnetic character of the proposed QHAs, confirming it through their integer total magnetic moment and electronic structures. The thermoelectric properties of QHAs were calculated and discussed based on various parameters, including the Seebeck coefficients, power factor, and figure of merit. Finally, the results suggest the potential utility of these QHAs in thermo-spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R A De Groot, F M Mueller and P G Van Engen Rev. Lett. 50 2024 (1983)

    Article  ADS  Google Scholar 

  2. A Hirohata, M Kikuchi, N Tezuka, K Inomata, J S Claydon and Y B Xu Current Opinion in Solid State & Mater. Sci. 10 93 (2006)

    Article  CAS  ADS  Google Scholar 

  3. P Entel, M Siewert, M E Gruner, A Chakrabarti, S R Barman, V V Sokolovskiy and V D Buchelnikov J. Alloys Comp. 577 S107 (2013)

    Article  CAS  Google Scholar 

  4. L Y Jia et al. D L Hou Journal of Superconductivity and Novel Magnetism 31 1067 (2018)

    Article  CAS  Google Scholar 

  5. G Y Gao, L Yao, B Luo and N Liu J. Alloys Comp. 551 539 (2013)

    Article  CAS  Google Scholar 

  6. S Anand, M Wood, C Wolverton and G Jeffrey Snyder Joule 3 1226 (2019)

    Article  CAS  Google Scholar 

  7. S Berri, D Maouche, M Ibrir and F Zerarga J. Magn. Magn. Mater. 354 65 (2014)

    Article  CAS  ADS  Google Scholar 

  8. O Cheref, S Benalia, N Bettahar, D Rached, M Rabah, M Merabet and L Djoudi J. Superconduct Novel Magnetism 33 3875 (2020)

    Article  CAS  Google Scholar 

  9. M C H Elahmar, H Rached, D Rached, S Benalia, R Khenata, Z E Biskri and S Bin Omran Mater. Sci-Poland 34 85 (2016)

    Article  CAS  ADS  Google Scholar 

  10. I Asfour, H Rached, S Benalia and D Rached Journal of Alloys and Compounds 676 440 (2016)

    Article  CAS  Google Scholar 

  11. M H Elahmar, H Rached and D Rached Mater. Chem. Phys. 267 124712 (2021)

    Article  CAS  Google Scholar 

  12. D P Rai, A Shankar Sandeep, M P Ghimire, R Khenata and R K Thapa RSC Adv. 5 95353 (2015)

  13. Y Rached, M Caid, M Merabet, S Benalia, H Rached, L Djoudi and M Mokhtari D Rached Int. J. Quantum Chem 122 e26875 (2022)

    Article  CAS  Google Scholar 

  14. Y Rached, M Caid, H Rached, M Merabet, S Benalia, S Al-Qaisi, L Djoudi and D Rached J. Supercond. Nov. Magn 35 875 (2022)

    Article  CAS  Google Scholar 

  15. X Wang, W Bao and G Sun Front. Phys. 7 96 (2019)

    Article  Google Scholar 

  16. S Ikeda, J Hayakawa, Y Ashizawa, Y M Lee, K Miura, H Hasegawa and S S Parkin Nature Mater. 9 721 (2008)

    Article  ADS  Google Scholar 

  17. G Binasch, F Saurenbach and W Zinn Phys. Rev. B 39 4828 (1989)

    Article  CAS  ADS  Google Scholar 

  18. P Hohenberg and W Kohn Phys. Rev. B 136 864 (1964)

    Article  ADS  Google Scholar 

  19. P Blaha, K Schwarz, F Tran, R. Laskowski, Georg K.H. Madsen, Laurence D. Marks J. Chem. Phys 152 074101 (2020)

  20. J P Perdew, K Burke and M Ernzerh J. Phys. Rev. Lett. 77 3865 (1996)

    Article  CAS  ADS  Google Scholar 

  21. F Tran and P Blaha Phys. Rev. Lett 102 226401 (2009)

    Article  PubMed  ADS  Google Scholar 

  22. D Koller, F Tran and P Blaha Phys. Rev B 85 155109 (2012)

    Article  ADS  Google Scholar 

  23. M Jamal, M Bilal and S Jalali-Asadabadi J. Alloys Comp. 735 563 (2018)

    Article  Google Scholar 

  24. S Alsayegh, H Alqurashi and E Andharih J. Magn. Magn. Mater 568 170421 (2023)

    Article  CAS  Google Scholar 

  25. F D Murnaghan Proc. Natl. Acad. Sci. U.S.A. 30 244 (1944)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. E Andharia, H Alqurashi and B Hamad Materials 15 3128 (2022)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. S Baroni, S de Gironcoli and A Dal Corso Rev. Mod. Phys. 73 515 (2001)

    Article  CAS  ADS  Google Scholar 

  28. M D Segall et al. J. Phys.: Condens. Matter 14 2717 (2002)

  29. B N M MontanariHarrison Chem. Phys. Lett 364 528 (2002)

    Article  ADS  Google Scholar 

  30. M Born and K Huang Am. J. Phys 23 474 (1955)

    Article  ADS  Google Scholar 

  31. S A Khandy and D C Gupta RSC Adv 6 48009 (2016)

    Article  CAS  ADS  Google Scholar 

  32. S F Pugh Mag. J. Sci 45 823 (1954)

    CAS  Google Scholar 

  33. N Mehtougui et al. Comput. Cond. Matter 32 e00730 (2022)

    Article  Google Scholar 

  34. X Q Chen, H Niu, D Li and Y Li Intermetallics 19 1275 (2011)

    Article  CAS  Google Scholar 

  35. G K H Madsen and D J Singh Comput. Phys. Commun 175 67 (2006)

    Article  CAS  ADS  Google Scholar 

  36. M A Blanco, E Francisco and V Luaña Computer Phys. Commun. 158 57 (2004)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

I would like to express my sincere gratitude to SR (Computer science, Djillali LIABES University) for his invaluable assistance in proofreading and supporting me throughout the manuscript. His help has been truly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

DR contributed to Investigation, methodology, formal analysis; supervision; writing – review and editing. LB contributed to Formal analysis; writing – review and editing. MC contributed to Formal analysis; validation; visualization; writing – original draft. YR contributed to Conceptualization; data curation; formal analysis; investigation; methodology; software; writing – original draft. AAAB contributed to Investigation; methodology; Formal analysis; writing – review and editing. HR contributed to Formal analysis; writing – review and editing. MM contributed to Formal analysis; writing – review and editing. SB contributed to Formal analysis; writing – review and editing.

Corresponding author

Correspondence to D. Rached.

Ethics declarations

Conflict of interest

There is no conflicts of interest to declare.

Data availability

No data was used for the research described in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rached, D., Boumia, L., Caid, M. et al. The half-metallic ferromagnetic and thermoelectric responses of the potential thermo-spintronic compounds CrTiRhZ (Z: Al or Si) QHA. Indian J Phys 98, 1645–1654 (2024). https://doi.org/10.1007/s12648-023-02936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02936-0

Keywords

Navigation