Skip to main content
Log in

GGA based study on electronic structure and thermoelectric properties of Mn2PtCo full-Heusler compound

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The Heusler compounds have been recognized not only for their applications in spintronic and memory devices but also for thermoelectric devices. In this paper, the electronic and thermoelectric properties of Mn2PtCo full-Heusler compound have been investigated by using the full-potential linearized augmented planewave method and the Boltzmann semi-classical Boltzmann transport theory, respectively. The Mn2PtCo was found stable in Cu2MnAl-prototype structure with ferromagnetic phase. The Mn2PtCo showed metallic character in both the spin channels using generalized gradient approximation. Further, thermoelectric properties like Seebeck coefficient, electrical conductivity, electronic thermal conductivity and power factor have been obtained within the specified temperature range (0–1000 K). The value of power factor was calculated to be 5.90 × 1011 WK−2m−1s−1 at 1000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y W Chai, T Oniki and Y Kimura Acta Mater. 85 290-300 (2015).

    Article  Google Scholar 

  2. S W Kim, Y Kimura and Y Mishima Intermetallics 15 349-356 (2007).

    Article  Google Scholar 

  3. H Zenasni, H I Faraoun and C Esling J. Magn. Magn. Mater. 333 162-168 (2013).

    Article  ADS  Google Scholar 

  4. X T Wang, Z X Cheng, H K Yuan and R Khenata J. Mater. Chem. C 5(44) 11559-11564 (2017).

    Article  Google Scholar 

  5. A Bentouaf, F H Hassan, A H Reshak and B Aïssa J. Electron. Mater. 46(1) 130-142 (2017).

  6. K Kaur, S Dhiman and R Kumar Phys. Lett. A 381(4) 339-343 (2017).

    Article  Google Scholar 

  7. S A Khandy and D C Gupta RSC Adv. 6 97641 (2016).

    Article  ADS  Google Scholar 

  8. V Kocevski and C Wolverton Chem. Mater. 29(21) 9386-9398 (2017).

  9. H Xie, H Wang, C Fu, Y Liu, G J Snyder, X Zhao and T Zhu Sci. Rep. 4(1) 6888 (2015).

    Article  Google Scholar 

  10. F Heusler, W Starck and E Haupt Verh. d. DPG 5 220 (1903).

  11. F Heusler Verh. d. DPG 5 219 (1903).

  12. Z Wen, T Kubota, T Yamamoto and K Takanashi Sci. Rep. 5 18387 (2015).

    Article  ADS  Google Scholar 

  13. A Hirohata, M Kikuchi, N Tezuka, K Inomata, J S Claydon, Y B Xu and G van der Laan Curr. Opin. Solid State Mater. Sci. 10 93–107 (2006).

    Article  ADS  Google Scholar 

  14. T Yang, J Cao and X Wang Crystals 8 429 (2018).

    Article  Google Scholar 

  15. H C Kandpal, G H Fecher and C Felser J. Phys. D: Appl. Phys. 40 1507 (2007).

    Article  ADS  Google Scholar 

  16. S Sanvito, C Oses, J Xue, A Tiwari, M Zic, T Archer, P Tozman, M Venkatesan, M Coey and S Curtarolo Sci. Adv. 3 e1602241 (2017).

    Article  ADS  Google Scholar 

  17. M E A Monir, R Khenata, R H Baltache, G Murtaza, M S Abu-Jafar, A Bouhemadou, S B Omran, D Rached J. Magn. Magn. Mater. 394 404–409 (2015).

    Article  ADS  Google Scholar 

  18. M Zipporah, P Rohit, M Robinson, M Julius, S Ralph, K Arti AIP Advances 7 055705 (2017).

    Article  ADS  Google Scholar 

  19. A Bentouaf, F H Hassan, A H Reshak and B Aissa J. Electr. Mater. 46 130-142 (2017).

    Article  ADS  Google Scholar 

  20. S Berri, M Ibrir, D Maouche and R Bensalem J. Magn. Magn. Mater. 361 132-136 (2014).

    Article  ADS  Google Scholar 

  21. S A Dar, J. Molecul. Model. 26 35 (2020).

    Article  Google Scholar 

  22. J Duan, W Yin-Wei, A Zhang, S Liu and S A Dar Solid State Commun. 290 12-21 (2019).

    Article  ADS  Google Scholar 

  23. V Srivastava, N Kaur, R Khenata and S A Dar J. Magn. Magn. Mater. 513 167107 (2020).

    Article  Google Scholar 

  24. Inshad Jum’h, S. Sâad essaoud, H. Baaziz, Z. Charifi and Ahmad Telfah J. Superconduct Novel Magn. 32 3915–3926 (2019).

  25. D M Hoat, N H Giang, M Naseri, R Ponce-Pérez, J F Rivas-Silva, G H Cocoletzi Phys. Lett. A 384(24) 126589 (2020).

    Article  Google Scholar 

  26. P Hohenberg and W Kohn Phys. Rev. B 136 864 (1964).

    Article  ADS  Google Scholar 

  27. Z Wu and R E Cohen Phys. Rev. B 73 235116 (2006).

    Article  ADS  Google Scholar 

  28. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996).

    Article  ADS  Google Scholar 

  29. G K H Madsen and D J Singh Comput. Phys. Commun. 175 67-71 (2006).

    Article  ADS  Google Scholar 

  30. P B Allen, Boltzmann theory and resistivity of metals, in: J R Chelikowsky, S G Louie (Eds.), Quantum Theory of Real Materials, Kluwer, Boston, pp. 219–250 (1996).

    Chapter  Google Scholar 

  31. J M Ziman, Electrons and Phonons, Oxford Classics Series, Clarendon Press, Oxford, (2001).

    Book  Google Scholar 

  32. C M Hurd, The Hall Effect in Metals and Alloys, Plenum Press, New York–London, (1972).

    Book  Google Scholar 

  33. S A Dar, R Sharma, V Srivastava and U K Sakalle RSC. Adv. 9 9522 (2019).

  34. S A Dar, V Srivastava and U K Sakalle Comput. Conden. Matter 16 e00351 (2018).

    Google Scholar 

  35. S A Dar, V Srivastava, U K Sakalle, V Pareye and G Pagare Mater. Sci. Eng. B 236–237 217–224 (2018).

    Google Scholar 

  36. Q Mahmood, S M Alay-e-Abbas, M Hassan and N A Noor J. Alloys Comp. 688 899-907 (2016).

    Article  Google Scholar 

  37. Q Mahmood, M Hassan and N A Noor J. Phys. Condens. Mater 28 506001 (2016).

    Article  Google Scholar 

  38. Q Mahmood, G Murtaza, R Ahmad, T Hussain and I G Will J. Current Appl. Phys. 16 361-370 (2016).

    Article  ADS  Google Scholar 

  39. Q Mahmood and M Hassan J. Alloys Comp. 704 659- 675 (2017).

    Article  Google Scholar 

  40. M Hassan, N Akhtar, Q Mahmood and A Laref Mater. Sci. Eng. B 239 50-60 (2018).

    Article  Google Scholar 

  41. Q Mahmood, S Khalil, M Hassan and A Laref Mater. Res. Bull. 107 225-235 (2018).

    Article  Google Scholar 

  42. Q Mahmood, G Murtaza, G Ali, M Hassan, E Algrafy, M S Shahid, Nessrin A Kattan and A Lare J. Alloys Comp. 834 155176 (2020).

    Article  Google Scholar 

  43. F Birch Phys. Rev. 71 809 (1947).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipul Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Srivastava, V. & Dar, S.A. GGA based study on electronic structure and thermoelectric properties of Mn2PtCo full-Heusler compound. Indian J Phys 96, 71–77 (2022). https://doi.org/10.1007/s12648-020-01941-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01941-x

Keywords

Navigation