Skip to main content
Log in

Structural and Thermoelectric Properties of Ternary Full-Heusler Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoelectric properties of ternary full-Heusler alloys, Co2 YZ, which are in a ferromagnetic state up to high temperature above 300 K, were measured and are discussed in terms of the crystal structure and electronic states. Among the full-Heusler alloys studied, the Co2MnSi sample exhibited the highest absolute value of Seebeck coefficient and also the highest electrical conductivity in the temperature range from 300 K to 1023 K. The highest power factor of 2.9 × 10−3 W/m-K2 was obtained for the Co2MnSi sample at 550 K, demonstrating the potential of half-metallic full-Heusler alloys as thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Graf, G.H. Fecher, J. Barth, J. Winterlik, and C. Felser, J. Phys. D Appl. Phys. 42, 084003 (2009).

    Article  Google Scholar 

  2. J. Barth, G.H. Fecher, B. Balke, S. Ouardi, T. Graf, C. Felser, A. Shkabko, A. Weidenkaff, P. Klaer, and H.J. Elmers, Phys. Rev. B 81, 064404 (2010).

    Article  Google Scholar 

  3. T. Graf, J. Barth, B. Balke, S. Populoh, A. Weidenkaff, and C. Felser, Scr. Mater. 63, 925 (2010).

    Article  Google Scholar 

  4. B. Balke, S. Ouardi, T. Graf, J. Barth, C.G.F. Blum, G.H. Fecher, A. Shkabko, A. Weidenkaff, and C. Felser, Solid State Commun. 150, 529 (2010).

    Article  Google Scholar 

  5. T. Graf, J. Barth, C.G.F. Blum, B. Balke, and C. Felser, Phys. Rev. B 82, 104420 (2010).

    Article  Google Scholar 

  6. S. Sharma and S.K. Pandey, J. Phys.: Condens. Matter 26, 215501 (2014).

    Google Scholar 

  7. A.H. Reshak, RSC Adv. 4, 39569 (2014).

    Google Scholar 

  8. P. Mohankumar, S. Ramasubramanian, M. Rajagopalan, M.M. Raja, S.V. Kamat, and J. Kumar, Comput. Mater. Sci. 109, 34 (2015).

    Article  Google Scholar 

  9. B.G. Yalcin, J. Magn. Magn. Mater. 408, 137 (2016).

    Article  Google Scholar 

  10. S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov, C. Felser, H.-J. Lin, and J. Morais, Phys. Rev. B 72, 184434 (2005).

    Article  Google Scholar 

  11. K. Kobayashi, R.Y. Umetsu, R. Kainuma, K. Ishida, T. Oyamada, A. Fujita, and K. Fukamichi, Appl. Phys. Lett. 85, 4684 (2004).

    Article  Google Scholar 

  12. P.J. Webster, J. Phys. Chem. Solids 32, 1221 (1971).

    Article  Google Scholar 

  13. R.Y. Umetsu, K. Kobayashi, A. Fujita, R. Kainuma, and K. Ishida, J. Appl. Phys. 103, 07D718 (2008).

    Article  Google Scholar 

  14. F. Izumi and K. Momma, Solid State Phenom. 130, 15 (2007).

    Article  Google Scholar 

  15. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz (Austria: Technische Universität Wien, 2001).

    Google Scholar 

  16. T. Graf and C. Felser, in Spintronics from Materials to Devices, ed. by C. Felser, G.H. Fecher (Springer, The Netherlands, 2013), pp. 45–59.

    Google Scholar 

  17. G.H.K. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  18. K.H.J. Buschow, P.G. van Engen, and R. Jongebreur, J. Magn. Magn. Mater. 38, 1 (1983).

    Article  Google Scholar 

  19. Y. Takamura, R. Nakane, and S. Sugahara, J. Appl. Phys. 107, 09B111 (2010).

    Article  Google Scholar 

  20. S.V. Karthik, A. Rajanikanth, Y.K. Takahashi, T. Okhubo, and K. Hono, Appl. Phys. Lett. 89, 052505 (2006).

    Article  Google Scholar 

  21. S.V. Karthik, A. Rajanikanth, Y.K. Takahashi, T. Ohkubo, and K. Hono, Acta Mater. 55, 3867 (2007).

    Article  Google Scholar 

  22. P.J. Webster and K.R.A. Ziebeck, in Alloys and Compounds of d-Elements with Main Group Elements, Part 2, ed. by H.P.J. Wijn (Springer, Berlin, 1988), pp. 75--185.

  23. P.J. Webster, K.R.A. Ziebeck, and K.-U. Neumann, Magnetic Properties of Metals. Landolt-Börnstein, New Series, Group III, vol. 32/c (Springer, Berlin, 2001).

  24. V. Jung, G.H. Fecher, B. Balke, V. Ksenofontov, and C. Felser, J. Appl. Phys. D: Appl. Phys. 42, 084007 (2009).

    Article  Google Scholar 

  25. J.M. Ziman, Electrons and Phonons (Oxford: Oxford Classics Series, Clarendon, 2001).

    Book  Google Scholar 

  26. Y. Miura, K. Nagao, and M. Shirai, Phys. Rev. B 69, 144413 (2004).

    Article  Google Scholar 

  27. M. Meinert, C. Friedrich, G. Reiss, and S. Blügel, Phys. Rev. B 86, 245115 (2012).

    Article  Google Scholar 

  28. Y. Zhang, X. Jia, H. Sun, B. Sun, B. Liu, H. Liu, L. Kong, and H. Ma, RSC Adv. 6, 7378 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grants-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Grant No. 25289222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, K., Eguchi, M. & Miyazaki, Y. Structural and Thermoelectric Properties of Ternary Full-Heusler Alloys. J. Electron. Mater. 46, 2710–2716 (2017). https://doi.org/10.1007/s11664-016-4944-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4944-0

Keywords

Navigation