Skip to main content
Log in

Robustness in spin polarization and thermoelectricity in newly tailored Mn2-based Heusler alloys

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Investigation of electronic structure, magnetism, hybridization and thermoelectricity of Mn2-based Heusler alloys within the framework of DFT simulation technique have been carried out. Through the optimized ground state parameters viz., lattice constant, total energy and bulk’s modulus, electronic properties, magnetic properties and thermoelectric response of new tailored materials is reported. Mechanically stable with ductile nature and 100% spin polarization could favor their use in future spintronic materials. Thermoelectric properties are investigated through the variation of carrier concentration and temperature. Power factor analysis show a way for the selection of the optimal carrier concentration responsible for increasing their thermoelectric response with temperature. The power factor of 857.51 (966.16) × 109µW K−2 m−1 s−1 at an optimal concentration of 1018 cm−3 and temperature of 800 K for Mn2YSn (Mn2ZnSn) respectively is obtained. The Seebeck coefficient portray them as p-type materials and show a linear increase with temperature and vice versa for the carrier concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D M Rowe (ed.) CRC Handbook of Thermoelectrics (Boca Raton: CRC) (1995)

    Google Scholar 

  2. K Matsubara in International Conference on Thermoelectrics, p 418 (2002)

  3. I H Bhat, S Yousuf, T M Bhat and D C Gupta J. Magn. Magn. Mater. 395 81 (2015)

    Article  ADS  Google Scholar 

  4. T M Bhat and D C Gupta RSC Adv. 6 80302 (2016)

    Article  Google Scholar 

  5. S A Khandy and D C Gupta RSC Adv. 6 97641 (2016)

    Article  Google Scholar 

  6. G Chen, M S Dresselhaus, G Dresselhaus, J P Fleurial and T Caillat Int. Mater. Rev. 48 45 (2003)

    Article  Google Scholar 

  7. C Uher in Thermoelectric Materials Research I Semiconductors and Semimetals Series 69 (ed.) T Tritt (Amsterdam: Elsevier) pp 139–253 (2001)

    Chapter  Google Scholar 

  8. G S Nolas, J Poon and M Kanatzidis Mater. Res. Soc. Bull. 31 199 (2006)

    Article  Google Scholar 

  9. C Wood Rep. Prog. Phys. 51 459 (1988)

    Article  ADS  Google Scholar 

  10. J P Heremans et al. Science 321 554 (2008)

    Article  ADS  Google Scholar 

  11. K F Hsu et al. Science 303 818 (2004)

    Article  ADS  Google Scholar 

  12. P Blaha, K Schwarz, P Sorantin and S B Trickey Comput. Phys. Commun. 59 399 (1990)

    Article  ADS  Google Scholar 

  13. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  14. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2 k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (arlheinz Schwarz, Austria: Techn. Universität Wien), ISBN 3-9501031-1-2, (2001)

  15. S L Dudarev, G A Botton, S Y Savrasov, C J Humphreys and A P Sutton Phys. Rev. B 57 1505 (1998)

    Article  ADS  Google Scholar 

  16. I Galanakis, P H Dederichs, and N Papanikolaou Phys. Rev. B 66 174429 (2002)

    Article  ADS  Google Scholar 

  17. X Dai, G Liu, L Chen, J Chen and G Wu Solid State Commun. 140 533 (2006)

    Article  ADS  Google Scholar 

  18. S Yousuf and D C Gupta Mater. Chem. Phys. 192 33 (2017)

    Article  Google Scholar 

  19. V V Surikov, V N Zhordochkin and T Y Astakhova Hyperfine Interact. 59 469 (1990)

    Article  ADS  Google Scholar 

  20. N Lakshmi, A Pandey and K Venugopalan Bull. Mater. Sci. 25 309 (2002)

    Article  Google Scholar 

  21. H Z Luo, H W Zhang, Z Y Zhu, L Ma, S F Xu, G H Wu, X X Zhu, C B Jiang and H B Xu J. Appl. Phys. 103 083908 (2008)

    Article  ADS  Google Scholar 

  22. J C Phillips and J A van Vechten Phys. Rev. B 2 2147 (1970)

    Article  ADS  Google Scholar 

  23. J C Slater Phys. Rev. 49 931 (1936)

    Article  ADS  Google Scholar 

  24. S Yousuf and D C Gupta J. Phys. Chem. Solids 108 109 (2017), S Yousuf and D C Gupta Mater. Res. Express 4 116307 (2017)

  25. S Yousuf and D C Gupta Indian J. Phys. 91 33 (2017)

    Article  ADS  Google Scholar 

  26. S A Khandy and D C Gupta RSC Adv. 6 48009 (2016)

    Article  Google Scholar 

  27. D Pettifor Mater. Sci. Technol. 8 345 (1992)

    Article  Google Scholar 

  28. M E Fine, L D Brown and H L Marcus Scr. Metall. 18 951 (1984)

    Article  Google Scholar 

  29. Sanvito et al. Sci. Adv. 3 e1602241 (2017)

    Article  ADS  Google Scholar 

  30. D J Singh Phys. Rev. B Condens. Matter Mater. Phys. 81 1 (2010)

    ADS  Google Scholar 

  31. S Yousuf and D C Gupta Mater. Sci. Eng. B 221 73 (2017)

    Article  Google Scholar 

  32. T J Scheidemantel, C Ambrosch-Draxl, T Thonhauser, J V Badding and J O Sofo Phys. Rev. B 68 125210 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousuf, S., Gupta, D.C. Robustness in spin polarization and thermoelectricity in newly tailored Mn2-based Heusler alloys. Indian J Phys 92, 855–864 (2018). https://doi.org/10.1007/s12648-018-1175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1175-7

Keywords

PACS Nos.

Navigation