Skip to main content
Log in

Exploring of Cellulose Nanocrystals from Lignocellulosic Sources as a Powerful Adsorbent for Wastewater Remediation

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The increasing global concern over the contamination of natural resources, especially freshwater, has intensified the need for effective water treatment methods. This article focuses on the utilization of Cellulose nanocrystals (CNCs), sourced from lignocellulosic materials, for addressing environmental challenges. CNCs a product of cellulose-rich sources has emerged as a versatile and eco-friendly solution. CNCs boast unique chemical and physical properties that render them highly suitable for water remediation. Their nanoscale size, excellent biocompatibility, and recyclability make them stand out. Moreover, CNCs possess a substantial surface area and can be modified with functional groups to enhance their adsorption capabilities. Consequently, CNCs exhibit remarkable efficiency in removing a wide array of pollutants from wastewater, including heavy metals, pesticides, dyes, pharmaceuticals, organic micropollutants, oils, and organic solvents. This review delves into the adsorption mechanisms, surface modifications, and factors influencing CNCs’ adsorption capacities. It also highlights the impressive adsorption efficiencies of CNC-based adsorbents across diverse pollutant types. Employing CNCs in water remediation offers a promising, eco-friendly solution, as they can undergo treatment without producing toxic intermediates. As research and development in this field progress, CNC-based adsorbents are expected to become even more effective and find expanded applications in combating water pollution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

References

  1. Bureau of Reclamation (2020) Water facts—worldwide water supply, https://www.usbr.gov/mp/arwec/water-facts-ww-water-sup.html  Accessed 05 Mar 2023

  2. Velmurugan A, Swarnam P, Subramani T, Meena B, Kaledhonkar MJ (2020) Water demand and salinity. In: Farahani MHDA, Vatanpour V, Taheri A (eds) Desalination: challenges and opportunities. IntechOpen, London, pp 45–53

    Google Scholar 

  3. Misachi J, (2018). What percentage of the Earth’s water is drinkable? WorldAtlas. WorldAtlas. https://www.worldatlas.com/articles/what-percentage-of-the-earth-s-water-is-drinkable.html. (Accessed 07 July 2023)

  4. Al-Madfaei MY (2009) The Impact of Privatisation on the Sustainability of Water Resources. IWA Publications.  https://www.iwapublishing.com/news/impact-privatisation-sustainability-water-resources Accessed 24 Sep 2023

  5. Zac J (2023) What is the percentage of drinkable water on Earth?. World water reserve.  https://worldwaterreserve.com/percentage-of-drinkable-water-on-earth/. Accessed 16 Sep 2023

  6. Sayyed AJ, Pinjari DV, Sonawane SH, Bhanvase BA, Sheikh J, Sillanpää M (2021) Cellulose-based nanomaterials for water and wastewater treatments: a review. J Environ Chem Eng 9:106626

    Article  CAS  Google Scholar 

  7. Star T (2023) Sg Gong water turns blue, LUAS traces pollution to Rawang factory. The Star. https://www.thestar.com.my/metro/metro-news/2023/04/07/sg-gong-water-turns-blue-luas-traces-pollution-to-rawang-factory#:~:text=%22Following%20investigations%20by%20LUAS%2C%20the,and%20machines%20from%20the%20factory.%22. Accessed 4 August 2023

  8. Obaideen K, Shehata N, Sayed ET, Abdelkareem MA, Mahmoud MS, Olabi AG (2022) The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline.  Energy Nexus 7:100112

    Article  Google Scholar 

  9. De Sanctis M et al (2022) An innovative biofilter technology for reducing environmental spreading of emerging pollutants and odour emissions during municipal sewage treatment. Sci Total Environ 803:149966

    Article  PubMed  Google Scholar 

  10. Bijekar S et al (2022) The state of the art and emerging trends in the wastewater treatment in developing nations. Water 14(16):2537

    Article  CAS  Google Scholar 

  11. de Vries W (2021) Impacts of nitrogen emissions on ecosystems and human health: a mini review.  Curr Opin Environ Sci Heal 21:100249

    Article  Google Scholar 

  12. Karić N et al (2022) Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment. Chem Eng J Adv 9:100239

    Article  Google Scholar 

  13. Kumar A, Thakur A, Panesar PS (2023) A review on the industrial wastewater with the efficient treatment techniques.  Chem Pap 77(8):4131–4163

    Article  CAS  Google Scholar 

  14. Muthukumaran P, Suresh Babu P, Shyamalagowri S, Aravind J, Kamaraj M, Govarthanan M (2022)  Polymeric biomolecules based nanomaterials: production strategies and pollutant mitigation as an emerging tool for environmental application. Chemosphere 307:136008

    Article  CAS  PubMed  Google Scholar 

  15. Saravanan A, Thamarai P, Kumar PS, Rangasamy G (2022) Recent advances in polymer composite, extraction, and their application for wastewater treatment: a review. Chemosphere 308:136368

    Article  CAS  PubMed  Google Scholar 

  16. Li J et al (2022) Emerging food packaging applications of cellulose nanocomposites: a review. Polymers (Basel) 14(19):4025

    Article  CAS  PubMed  Google Scholar 

  17. Omran AAB et al (2021) Nanocellulose in polymer composite materials: a review. Polymers (Basel)   13(2):231

    Article  CAS  PubMed  Google Scholar 

  18. Thiruganasambanthan T et al (2022)  Emerging developments on nanocellulose as liquid crystals: a biomimetic approach. Polymers (Basel)   14(8):1546

    Article  CAS  PubMed  Google Scholar 

  19. Ilyas RA, Sapuan SM, Ishak MR (2017)  Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr Polym 181:1038–1051

    Article  PubMed  Google Scholar 

  20. Norfarhana AS, Ilyas RA, Ngadi N (2022)  A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydr Polym 291:119563

    Article  CAS  PubMed  Google Scholar 

  21. Salama A et al (2021) Nanocellulose-based materials for water treatment: adsorption, photocatalytic degradation, disinfection, antifouling, and nanofiltration. Nanomaterials 11:3008

    Article  CAS  PubMed  Google Scholar 

  22. Jin L, Li W, Xu Q, Sun Q (2015) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22(4):2443–2456

    Article  CAS  Google Scholar 

  23. Hamid HA, Jenidi Y, Thielemans W, Somerfield C, Gomes RL (2016) Predicting the capability of carboxylated cellulose nanowhiskers for the remediation of copper from water using response surface methodology (RSM) and artificial neural network (ANN) models. Ind Crops Prod 93:108–120

    Article  CAS  Google Scholar 

  24. Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4(5):2632–2643

    Article  CAS  Google Scholar 

  25. Anirudhan TS, Deepa JR, Christa J (2016) Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples. J Colloid Interface Sci 467:307–320

    Article  CAS  PubMed  Google Scholar 

  26. Huntley CJ, Crews KD, Curry ML (2015) Chemical functionalization and characterization of cellulose extracted from wheat straw using acid hydrolysis methodologies. Int J Polym Sci. https://doi.org/10.1155/2015/293981

    Article  Google Scholar 

  27. Anirudhan TS, Rejeena SR (2013) Selective adsorption of hemoglobin using polymer-grafted-magnetite nanocellulose composite. Carbohydr Polym 93(2):518–527

    Article  CAS  PubMed  Google Scholar 

  28. Liu P, Borrell PF, Božič M, Kokol V, Oksman K, Mathew AP (2015) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2 + and Fe3 + from industrial effluents. J Hazard Mater 294:177–185

    Article  CAS  PubMed  Google Scholar 

  29. Park SH et al (2019) Poly (acryloyl hydrazide)-grafted cellulose nanocrystal adsorbents with an excellent Cr(VI) adsorption capacity. J Hazard Mater 394:122512

    Article  Google Scholar 

  30. Eyley S, Thielemans W (2011) Imidazolium grafted cellulose nanocrystals for ion exchange applications. Chem Commun 47(14):4177–4179

    Article  CAS  Google Scholar 

  31. Darabitabar F, Yavari V, Hedayati A, Zakeri M, Yousefi H (2020) Novel cellulose nanofiber aerogel for aquaculture wastewater treatment. Environ Technol Innov 18:100786

    Article  Google Scholar 

  32. Konganapuram Narasimma Bharathi SS, Adiga V, Khasnabis S, Nath B, Khan NA, Ramamurthy PC (2022) Study of nano cellulose-based membrane tailorable biodegradability for use in the packaging application of electronic devices. Chemosphere 309:136683

    Article  CAS  PubMed  Google Scholar 

  33. Song Y, Jiang M, Zhou L, Yang H, Zhang J (2022) Rapidly regenerated CNC/TiO2/MnO2 porous microspheres for high-efficient dye removal. Carbohydr Polym 292:1–8

    Article  Google Scholar 

  34. Herrera-Morales J, Morales K, Ramos D, Ortiz-Quiles EO, López-Encarnación JM, Nicolau E (2017) Examining the use of nanocellulose composites for the sorption of contaminants of emerging concern: an experimental and computational study. ACS Omega 2(11):7714–7722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45

    Article  CAS  Google Scholar 

  36. Landge VK, Sonawane SH, Manickam S, Bhaskar Babu GU, Boczkaj G (2021) Ultrasound-assisted wet-impregnation of Ag-Co nanoparticles on cellulose nanofibers: enhanced catalytic hydrogenation of 4-nitrophenol. J Environ Chem Eng 9:105719

    Article  CAS  Google Scholar 

  37. Zielińska D, Rydzkowski T, Thakur VK, Borysiak S (2021) Enzymatic engineering of nanometric cellulose for sustainable polypropylene nanocomposites. Ind Crops Prod 161:113188

    Article  Google Scholar 

  38. WHO and UNICEF (2012) Progress on drinking water nad sanitation updated Report in 2012

  39. Paul J, Ahankari SS (2023) Nanocellulose-based aerogels for water purification: a review. Carbohydr Polym 309:120677

    Article  CAS  PubMed  Google Scholar 

  40. Zhao J et al (2023) Preparation of nanocellulose-based aerogel and its research progress in wastewater treatment. Molecules 28(8):3541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lorevice MV et al (2023)  Designing 3D fractal morphology of eco-friendly nanocellulose-based composite aerogels for water remediation. Chem Eng J 462:142166

    Article  CAS  Google Scholar 

  42. Wang Z et al (2022)  Nanocellulose-based membranes for highly efficient molecular separation. Chem Eng J 451:138711

    Article  Google Scholar 

  43. Che Su N, Basirun AA, Hameed Sultan NS, Kanakaraju D, Wilfred CD (2023) Modified nanocellulose-based adsorbent from sago waste for diclofenac removal. Sustain 15(7):5650

    Article  CAS  Google Scholar 

  44. Fatimah AS, Paridah MT, Lee SH, Lee CL (2021) The sulphate removal via post alkaline treatment on nanocrystalline cellulose with different lignin content extracted from kenaf core. J Adv Res Fluid Mech Therm Sci 84(1):11–19

    Article  Google Scholar 

  45. Sabaruddin FA et al (2020) The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites.  Polymers (Basel) 13(1):116

    Article  PubMed  Google Scholar 

  46. Ilyas RA, Sapuan SM, Sanyang ML, Ishak MR, Zainudin ES (2018) Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review. Curr Anal Chem 14(3):203–225

    Article  CAS  Google Scholar 

  47. Ilyas RA et al (2021) Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Text Res J 91:1–2

    Article  Google Scholar 

  48. Akli K, Maryam M, Senjawati MI, Ilyas RA (2022)  Eco-friendly bioprocessing oil palm empty fruit bunch (Opefb) fibers into nanocrystalline cellulose (Ncc) using white-rot fungi (Tremetes Versicolor) and cellulase enzyme (Trichoderma Reesei). J Fibers Polym Compos 1(2):148–163

    Article  Google Scholar 

  49. Tshikovhi A, Mishra SB, Mishra AK (2020) Nanocellulose-based composites for the removal of contaminants from wastewater. Int J Biol Macromol 152:616–632

    Article  CAS  PubMed  Google Scholar 

  50. Shojaeiarani J, Bajwa DS, Chanda S (2020) Cellulose nanocrystal based composites: a review. Compos. Part C Open Access 5:100164

    Article  Google Scholar 

  51. Jiang H, Wu S, Zhou J (2022) Preparation and modification of nanocellulose and its application to heavy metal adsorption: a review.  Int J Biol Macromol 236:123916

    Article  Google Scholar 

  52. Maciel MMÁD, de Benini KCC, Voorwald HJC, Cioff MOH (2019) Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: effect of acid hydrolysis conditions. Int J Biol Macromol 126:496–506

    Article  CAS  PubMed  Google Scholar 

  53. Couret L, Irle M, Belloncle C, Cathala B (2017) Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste. Cellulose 24(5):2125–2137

    Article  CAS  Google Scholar 

  54. Saadiah H, Nadia F, Zhu J, Wakisaka M (2020)  Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment. Carbohydr Polym 260:117789

    Google Scholar 

  55. Ait A et al (2021) Extraction, characterization and chemical functionalization of phosphorylated cellulose derivatives from giant reed plant. Cellulose 28(8):4625–4642

    Article  Google Scholar 

  56. Mariano M, Kissi NE, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B Polym Phys 52(12):791–806

    Article  CAS  Google Scholar 

  57. Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59(6):449–459

    Article  CAS  Google Scholar 

  58. Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2021) Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: a review. Carbohydr Polym 251:116986

    Article  CAS  PubMed  Google Scholar 

  59. Beck S, Bouchard J (2014) Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord Pulp Pap Res J 29(1):6–14

    Article  CAS  Google Scholar 

  60. Leong SL et al (2022) Morphological control of cellulose nanocrystals via sulfuric acid hydrolysis based on sustainability considerations: an overview of the governing factors and potential challenges. J Environ Chem Eng 10(4):108145

    Article  CAS  Google Scholar 

  61. Fan Q et al (2020) Eco-friendly extraction of cellulose nanocrystals from grape pomace and construction of self-healing nanocomposite hydrogels. Cellulose 27(5):2541–2553

    Article  CAS  Google Scholar 

  62. Norizan MN et al (2022) Nanocellulose-based nanocomposites for sustainable applications: a review. Nanomaterials 12(19):3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen M, Parot J, Hackley VA, Zou S, Johnston LJ (2021)  AFM characterization of cellulose nanocrystal height and width using internal calibration standards. Cellulose 28(4):1933–1946

    Article  CAS  Google Scholar 

  64. Syafiq RMO, Sapuan SM, Zuhri MYM, Othman SH, Ilyas RA (2022) Effect of plasticizers on the properties of sugar palm nanocellulose/cinnamon essential oil reinforced starch bionanocomposite films. Nanotechnol Rev 11(1):423–437

    Article  CAS  Google Scholar 

  65. Nazrin A, Sapuan SM, Zuhri MYM, Tawakkal ISMA, Ilyas RA (2022) Flammability and physical stability of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch / poly (lactic acid) blend bionanocomposites. Nanotechnol Rev 11:86–95

    Article  CAS  Google Scholar 

  66. Nazrin A, Sapuan SM, Zuhri MYM, Tawakkal ISMA, Ilyas RA (2021) Water barrier and mechanical properties of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/poly(lactic acid) (PLA) blend bionanocomposites. Nanotechnol Rev 10(1):431–442

    Article  CAS  Google Scholar 

  67. Norrrahim MNF et al (2021) Cationic nanocellulose as promising candidate for filtration material of COVID-19: a perspective. Appl Sci Eng Prog 14(580):587

    Google Scholar 

  68. Norrrahim MNF et al (2022)  The frontiers of functionalized nanocellulose-based composites and their application as chemical sensors. Polymers (Basel)  14:4461

    Article  CAS  PubMed  Google Scholar 

  69. Long W et al (2021)  State-of-art review on preparation, surface functionalization and biomedical applications of cellulose nanocrystals-based materials.  Int J Biol Macromol 186:591–615

    Article  CAS  PubMed  Google Scholar 

  70. Pandi N, Sonawane SH, Anand Kishore K (2020) Synthesis of cellulose nanocrystals (CNCs) from cotton using ultrasound-assisted acid hydrolysis.  Ultrason Sonochem 70:105353

    Article  PubMed  PubMed Central  Google Scholar 

  71. Arai K, Horikawa Y, Shikata T (2018)  Transport properties of commercial cellulose nanocrystals in aqueous suspension prepared from chemical pulp via sulfuric acid hydrolysis.  ACS Omega 3(10):13944–13951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chao W et al (2020) Natural sponge-like wood-derived aerogel for solar-assisted adsorption and recovery of high-viscous crude oil. Chem Eng J 400:125865

    Article  CAS  Google Scholar 

  73. Che W et al (2019) Wood-based mesoporous filter decorated with silver nanoparticles for water purification. ACS Sustain Chem Eng 7:5134–5141

    Article  CAS  Google Scholar 

  74. Zhang Q et al (2023) Carbonized wood impregnated with bimetallic nanoparticles as a monolithic continuous-flow microreactor for the reduction of 4-nitrophenol. J Hazard Mater 443:130270

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Q et al (2021) In situ growth gold nanoparticles in three-dimensional sugarcane membrane for fl ow catalytical and antibacterial application. J Hazard Mater 402:123445

    Article  CAS  PubMed  Google Scholar 

  76. Li J et al (2022) Applied catalysis B: environmental bamboo-inspired design of a stable and high-efficiency catalytic capillary microreactor for nitroaromatics reduction. Appl Catal B Environ 310:121297

    Article  CAS  Google Scholar 

  77. Yu S, Sun J, Shi Y, Wang Q, Wu J, Liu J (2021) Nanocellulose from various biomass wastes: its preparation and potential usages towards the high value-added products. Environ Sci Ecotechnology 5:100077

    Article  CAS  Google Scholar 

  78. Trache D et al (2020) Nanocellulose: from fundamentals to advanced applications. Front Chem 8:392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9(1):2479–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Peng S, Luo Q, Zhou G, Xu X (2021) Recent advances on cellulose nanocrystals and their derivatives. Polym (Basel) 13(19):3247

    Article  CAS  Google Scholar 

  81. Mali P, Sherje AP (2022) Cellulose nanocrystals: fundamentals and biomedical applications. Carbohydr Polym 275:118668

    Article  CAS  PubMed  Google Scholar 

  82. Whba F, Mohamed F, Idris MI, Yahya MS (2023) Surface modification of cellulose nanocrystals (CNCs) to form a biocompatible, stable, and hydrophilic substrate for MRI. Appl Sci 13:6316

    Article  CAS  Google Scholar 

  83. Nitodas S, Skehan M, Liu H, Shah R (2023)  Membranes.  Basel  13:694

    CAS  Google Scholar 

  84. Reshmy R (2021) Potential of nanocellulose for wastewater treatment. Chemosphere 281:130738

    Article  Google Scholar 

  85. Sanchez-Salvador JL, Xu H, Balea A, Negro C, Blanco A (2023) Nanocellulose from a colloidal material perspective. Front Mater 10:1231404

    Article  Google Scholar 

  86. Kurniawan TW, Sulistyarti H, Rumhayati B, Sabarudin A (2023) Cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) as adsorbents of heavy metal ions. J Chem 2023:5037027

    Article  Google Scholar 

  87. Ahankari S, George T, Subhedar A, Kar KK (2020) Nanocellulose as a sustainable material for water purification. SPE Polym 1:69–80

    Article  Google Scholar 

  88. Zuppolini S, Salama A, Cruz-Maya I, Guarino V, Borriello A (2022) Cellulose amphiphilic materials: chemistry, process and applications. Pharmaceutics 14(2):386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JHT (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces 5(17):8796–8804

    Article  CAS  PubMed  Google Scholar 

  90. Swasy MI et al (2020) Degradation of pesticides using amine-functionalized cellulose nanocrystals. RSC Adv 10(72):44312–44322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tsade Kara H, Anshebo ST, Sabir FK, Workineh GA (2021) Removal of methylene blue dye from wastewater using periodiated modified nanocellulose. Int J Chem Eng. https://doi.org/10.1155/2021/9965452

    Article  Google Scholar 

  92. Emam HE, Shaheen TI (2019) Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal. J Polym Environ 27(11):2419–2427

    Article  CAS  Google Scholar 

  93. Jebali A et al (2015) Adsorption of humic acid by amine-modified nanocellulose: an experimental and simulation study. Int J Environ Sci Technol 12:45–52

    Article  CAS  Google Scholar 

  94. Zhou L, Zhai S, Chen Y, Xu Z (2019) Anisotropic cellulose nanofibers/polyvinyl alcohol/graphene aerogels fabricated by directional freeze-drying as effective oil adsorbents. Polymers (Basel) 11:712

    Article  CAS  PubMed  Google Scholar 

  95. Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30

    Article  CAS  Google Scholar 

  96. Li W, Ju B, Zhang S (2019) Preparation of cysteamine-modified cellulose nanocrystal adsorbent for removal of mercury ions from aqueous solutions. Cellulose 26(8):4971–4985

    Article  CAS  Google Scholar 

  97. Levanič J, Šenk VP, Nadrah P, Poljanšek I, Oven P, Haapala A (2020) Analyzing TEMPO-Oxidized cellulose fiber morphology: new insights into optimization of the oxidation process and nanocellulose dispersion quality. ACS Sustain Chem Eng 8:17752–17762

    Article  Google Scholar 

  98. Fraschini C, Chauve G, Bouchard J (2017) TEMPO-mediated surface oxidation of cellulose nanocrystals (CNCs). Cellulose 24:2775–2790

    Article  CAS  Google Scholar 

  99. Thi Thanh T (2022) A comprehensive study on preparation of nanocellulose from bleached wood pulps by TEMPO-mediated oxidation. Results Chem 4:100540

    Article  Google Scholar 

  100. Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27(18):11332–11338

    Article  CAS  PubMed  Google Scholar 

  101. Si R et al (2022) Nanoarchitectonics for high Adsorption Capacity Carboxymethyl Cellulose Nanofibrils-based adsorbents for efficient Cu2 + removal. Nanomaterials 12:160

    Article  CAS  PubMed  Google Scholar 

  102. Mohamed SH et al (2022) Biosorption of Cr (VI) using cellulose nanocrystals isolated from the waterless pulping of waste cotton cloths with supercritical CO2: isothermal, kinetics, and thermodynamics studies. Polymers (Basel) 14:887

    Article  CAS  PubMed  Google Scholar 

  103. Tan XW, Romainor ANB, Chin SF, Ng SM (2014) Carbon dots production via pyrolysis of sago waste as potential probe for metal ions sensing. J Anal Appl Pyrol 105:157–165

    Article  CAS  Google Scholar 

  104. Bai L, Ding A, Li G, Liang H (2022) Application of cellulose nanocrystals in water treatment membranes: a review. Chemosphere 308:136426

    Article  CAS  PubMed  Google Scholar 

  105. Chan JX et al (2021) Effect of nanofillers on tribological properties of polymer nanocomposites: a review on recent development. Polymers (Basel) 13(17):2867

    Article  CAS  PubMed  Google Scholar 

  106. Carpenter AW, De Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49(9):5277–5287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816

    Article  CAS  PubMed  Google Scholar 

  108. Xu Q, Poggi G, Resta C, Baglioni M, Baglioni P (2020) Grafted nanocellulose and alkaline nanoparticles for the strengthening and deacidification of cellulosic artworks. J Colloid Interface Sci 576:147–157

    Article  CAS  PubMed  Google Scholar 

  109. Barhoum A, Samyn P, Öhlund T, Dufresne A (2017) Review of recent research on flexible multifunctional nanopapers. Nanoscale 9(40):15181–15205

    Article  CAS  PubMed  Google Scholar 

  110. George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Beck S, Méthot M, Bouchard J (2015) General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration. Cellulose 22(1):101–116

    Article  CAS  Google Scholar 

  112. Sunasee R, Hemraz UD (2018) Synthetic strategies for the fabrication of cationic surface-modified cellulose nanocrystals. Fibers 6(15):1–19

    Google Scholar 

  113. Gomri C, Cretin M, Semsarilar M (2022) Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-a comprehensive review. Carbohydr Polym 294:119790

    Article  CAS  PubMed  Google Scholar 

  114. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  PubMed  Google Scholar 

  115. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  CAS  PubMed  Google Scholar 

  116. Orts WJ, Godbout L, Marchessault RH, Revol JF (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31(17):5717–5725

    Article  CAS  Google Scholar 

  117. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65

    Article  CAS  PubMed  Google Scholar 

  118. Kusmono RF, Listyanda MW, Wildan, Ilman MN (2020) Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Heliyon 6:e05486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hunter RJ (2013) Zeta potential in colloid science: principles and applications. Academic Press, Cambridge

    Google Scholar 

  120. Abral H et al (2021) Antimicrobial edible film prepared from bacterial cellulose nanofibers/starch/chitosan for a food packaging alternative. Int J Polym Sci. https://doi.org/10.1155/2021/6641284

    Article  Google Scholar 

  121. Kadier A et al (2021) Use of industrial wastes as sustainable nutrient sources for bacterial cellulose (BC) production: mechanism, advances, and future perspectives. Polymers (Basel) 13(19):1–51

    Article  Google Scholar 

  122. Hamawand I, Seneweera S, Kumarasinghe P, Bundschuh J (2020) Nanoparticle technology for separation of cellulose, hemicellulose and lignin nanoparticles from lignocellulose biomass: a short review. Nano-Str Nano-Object 24:100601

    Article  CAS  Google Scholar 

  123. Islam MN, Rahman F (2019) Production and modification of nanofibrillated cellulose composites and potential applications. In: Koronis G, Silva A (eds) Green composites for automotive applications. Woodhead Publishing Series in Composites Science and Engineering, Cambridge, pp 115–141

    Chapter  Google Scholar 

  124. Dhar P, Tarafder D, Kumar A, Katiyar V (2015) Effect of cellulose nanocrystal polymorphs on mechanical, barrier and thermal properties of poly(lactic acid) based bionanocomposites. RSC Adv 5(74):60426–60440

    Article  CAS  Google Scholar 

  125. Diaz JA, Braun JL, Moon RJ, Youngblood JP (2015) Iridescent cellulose nanocrystal/polyethylene oxide composite films with low coefficient of thermal expansion. Int J Exp Comput Biomech 3(3):189–199

    Article  Google Scholar 

  126. Abbasi Moud A, Abbasi Moud A (2022) Cellulose nanocrystals (CNC) liquid crystalline state in suspension: an overview. Appl Biosci 1(3):244–278

    Article  Google Scholar 

  127. Akhlamadi G, Goharshadi EK, Saghir SV (2021) Extraction of cellulose nanocrystals and fabrication of high alumina refractory bricks using pencil chips as a waste biomass source. Ceram Int 47(19):27042–27049

    Article  CAS  Google Scholar 

  128. Xue J et al (2023) Dye adsorption performance of nanocellulose beads with different carboxyl group content. Cellulose 30:1623–1636

    Article  CAS  Google Scholar 

  129. Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew AP (2014) Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21(1):449–461

    Article  CAS  Google Scholar 

  130. Chen L, Yu H, Deutschman C, Yang T, Tam KC (2020) Novel design of Fe-Cu alloy coated cellulose nanocrystals with strong antibacterial ability and efficient Pb2+ removal.  Carbohydr Polym 234:115889

    Article  CAS  PubMed  Google Scholar 

  131. Karim Z, Mathew AP, Kokol V, Wei J, Grahn M (2016) High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Adv 6(25):20644–20653

    Article  CAS  Google Scholar 

  132. Samer M (2015) Biological and chemical wastewater treatment processes. In: Samer M (ed) Wastewater treatment engineering. IntechOpen, London, pp 1–50

    Chapter  Google Scholar 

  133. Da’ana DA et al (2021) Removal of toxic elements and Microbial contaminants from groundwater using low-cost treatment options. Curr Pollut Rep 7:300–324

    Article  Google Scholar 

  134. Rathi BS, Kumar PS (2021) Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ Pollut 280:116995

    Article  CAS  PubMed  Google Scholar 

  135. Ali I, Gupta VK (2006) Advances in water treatment by adsorption technology. Nat Protoc 1(6):2661–2667

    Article  CAS  PubMed  Google Scholar 

  136. Aragaw TA, Bogale FM (2021) Biomass-based adsorbents for removal of dyes from wastewater: a review. Front Environ Sci 9:764958

    Article  Google Scholar 

  137. Pietrzyk DJ, Frank CW (1979) Column methods. Anal Chem 51:500–516

    Article  Google Scholar 

  138. Findik F (2021) Nanomaterials and their applications. Period Eng Nat Sci 9(3):62–75

    Google Scholar 

  139. Mohammed N, Grishkewich N, Tam KC (2018) Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ Sci Nano 5(3):623–658

    Article  CAS  Google Scholar 

  140. Isa EDM, Shameli K, Ali RR, Balasundram V (2022) Advances in nanocellulose based materials as adsorbent for wastewater treatment. J Res Nanosci Nanotechnol 5(1):43–64

    Article  Google Scholar 

  141. Sukmana H, Bellahsen N, Pantoja F, Hodur C (2021) Adsorption and coagulation in wastewater treatment - review. Prog Agric Eng Sci 17(1):49–68

    Google Scholar 

  142. Liu Y et al (2022) Insights into efficient adsorption of the typical pharmaceutical pollutant with an amphiphilic cellulose aerogel. Chemosphere 291:132978

    Article  CAS  PubMed  Google Scholar 

  143. Ogunleye DT, Akpotu SO, Moodley B (2023) Crystalline nanocellulose anchored on reduced graphene oxide for the removal of pharmaceuticals from aqueous systems: adsorbent characterization and adsorption performance. ChemistrySelect 8(4):e202202533

    Article  CAS  Google Scholar 

  144. Pang SS, Wang B (2014) Synthesis of bisphenol a π-π stacking self-assembly imprinted polymer by precipitation polymerization and study on specifically recognition mechanism. Acta Polym Sin 1:49–55

    Google Scholar 

  145. Borkovec M, Papastavrou G (2008) Interactions between solid surfaces with adsorbed polyelectrolytes of opposite charge. Curr Opin Colloid Interface Sci 13(6):429–437

    Article  CAS  Google Scholar 

  146. Peng X, Hu F, Lam FLY, Wang Y, Liu Z, Dai H (2015) Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon. J Colloid Interface Sci 460:349–360

    Article  CAS  PubMed  Google Scholar 

  147. Igwegbe CA, Oba SN, Aniagor CO, Adeniyi AG, Ighalo JO (2021) Adsorption of ciprofloxacin from water: a comprehensive review. J Ind Eng Chem 93:57–77

    Article  CAS  Google Scholar 

  148. da Silva PMM et al (2021) Instantaneous adsorption and synergic effect in simultaneous removal of complex dyes through nanocellulose/graphene oxide nanocomposites: batch, fixed-bed experiments and mechanism. Monit Manag 16:100584

    Google Scholar 

  149. Oyewo OA, Adeniyi A, Sithole BB, Onyango MS (2020) Sawdust-based cellulose nanocrystals incorporated with ZnO nanoparticles as efficient adsorption media in the removal of methylene blue dye. ACS Omega 5:18798–18807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hubbe MA, Azizian S, Douven S (2019) Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: a review. Bioresource 14(3):7582–7626

    Article  Google Scholar 

  151. Zhou C, Wu Q, Lei T, Negulescu II (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide / cellulose nanocrystal nanocomposite hydrogels. Chem Eng J 251:17–24

    Article  CAS  Google Scholar 

  152. Hu H, Xu K (2020) Physicochemical technologies for HRPs and risk control. In: Ren H, Zhang X (eds) High-risk pollutants in wastewater. Elsevier, Amsterdam, pp 169–207

    Chapter  Google Scholar 

  153. Wang J, Guo X (2020) Adsorption isotherm models: classification, physical meaning, application and solving method.  Chemosphere 258:127279

    Article  CAS  PubMed  Google Scholar 

  154. Ye J, Tao S, Zhao S, Li S, Chen S, Cui Y (2022) Characteristics of methane adsorption/desorption heat and energy with respect to coal rank.  J Nat Gas Sci Eng 99:104445

    Article  CAS  Google Scholar 

  155. Kumar A, Singha S, Sengupta B, Dasgupta D, Datta S, Mandal T (2016) Intensive insight into the enhanced utilization of rice husk ash: abatement of rice mill wastewater and recovery of silica as a value added product. Ecol Eng 91:270–281

    Article  Google Scholar 

  156. Abu-Danso E, Srivastava V, Sillanpää M, Bhatnagar A (2017) Pretreatment assisted synthesis and characterization of cellulose nanocrystals and cellulose nanofibers from absorbent cotton. Int J Biol Macromol 102:248–257

    Article  CAS  PubMed  Google Scholar 

  157. Huang W, Liu ZM (2013) Biosorption of Cd(II)/Pb(II) from aqueous solution by biosurfactant-producing bacteria: isotherm kinetic characteristic and mechanism studies. Colloids Surf B Biointerfaces 105:113–119

    Article  CAS  PubMed  Google Scholar 

  158. Lu P, Lo Hsieh Y (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82(2):329–336

    Article  Google Scholar 

  159. Escobar ELN, da Silva TA, Pirich CL, Corazza ML, Pereira Ramos L (2020) Supercritical fluids: a promising technique for biomass pretreatment and fractionation. Front Bioeng Biotechnol 8:1–18

    Article  Google Scholar 

  160. Billah REK et al (2021) A comparative study on hexavalent chromium adsorption onto chitosan and chitosan-based composites. Polymers (Basel) 13(19):3427

    Article  CAS  PubMed  Google Scholar 

  161. Nair V, Panigrahy A, Vinu R (2014) Development of novel chitosan – lignin composites for adsorption of dyes and metal ions from wastewater. Chem Eng J 254:491–502

    Article  CAS  Google Scholar 

  162. Ariffin N et al (2017) Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web Conf 97:01023

    Article  Google Scholar 

  163. Xu J et al (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195:351–364

    Article  CAS  PubMed  Google Scholar 

  164. Kumari B, Tiwary RK, Yadav M (2021)  Non linear regression analysis and response surface modeling for Cr (VI) removal from aqueous solution using poly-aniline coated sugarcane bagasse (PANI@SB) composites as an adsorbent. Surf Interfaces 29:101729

    Article  Google Scholar 

  165. Choudhary B, Paul D (2018) Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar. J Environ Chem Eng 6(2):2335–2343

    Article  CAS  Google Scholar 

  166. Moradeeya PG, Kumar MA, Thorat RB, Rathod M, Khambhaty Y, Basha S (2017) Nanocellulose for biosorption of chlorpyrifos from water: chemometric optimization, kinetics and equilibrium. Cellulose 24(3):1319–1332

    Article  CAS  Google Scholar 

  167. Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21(3):1655–1665

    Article  CAS  Google Scholar 

  168. Qiao H et al (2015) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297–303

    Article  CAS  PubMed  Google Scholar 

  169. Pinto AH et al (2020) Wood-based cellulose nanocrystals as adsorbent of cationic toxic dye, auramine O, for water treatment. J Environ Chem Eng 8(5):104187

    Article  CAS  Google Scholar 

  170. Anirudhan TS, Shainy F (2015) Effective removal of mercury(II) ions from chlor-alkali industrial wastewater using 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite. J Colloid Interface Sci 456:22–31

    Article  CAS  PubMed  Google Scholar 

  171. Wahib SA, Da’na DA, Zaouri N, Hijji YM, Al-Ghouti MA (2022) Adsorption and recovery of lithium ions from groundwater using date pits impregnated with cellulose nanocrystals and ionic liquid. J Hazard Mater 421:126657

    Article  CAS  PubMed  Google Scholar 

  172. Georgouvelas D, Abdelhamid HN, Li J, Edlund U, Mathew AP (2021) All-cellulose functional membranes for water treatment: adsorption of metal ions and catalytic decolorization of dyes. Carbohydr Polym 264:118044

    Article  CAS  PubMed  Google Scholar 

  173. Chen Y et al (2020) Fabrication of cellulose nanocrystal-g-poly(acrylic acid-co-acrylamide) aerogels for efficient Pb(II) removal. Polymers (Basel)   12:333

    Article  CAS  PubMed  Google Scholar 

  174. Zhang Y et al (2023) Preparation methods of cellulose nanocrystal and its application in treatment of environmental pollution: a mini-review. Colloids Interface Sci Commun 53:100707

    Article  CAS  Google Scholar 

  175. Köse K, Mavlan M, Youngblood JP (2020) Applications and impact of nanocellulose based adsorbents. Cellulose 27(6):2967–2990

    Article  Google Scholar 

  176. ITOPF (2022)  https://www.itopf.org/knowledge-resources/data-statistics/statistics/ Accessed 05 Mar 2023

  177. Busetty S (2019) Environmental treatment technologies: adsorption. Handbook of environmental materials management. Springer, Cham, pp 1367–1397

    Chapter  Google Scholar 

  178. Li D et al (2019) Additive printed all-cellulose membranes with hierarchical structure for highly efficient separation of Oil/Water nanoemulsions. ACS Appl Mater Interfaces 11(47):44375–44382

    Article  CAS  PubMed  Google Scholar 

  179. Zhang F et al (2022)  Enhanced pickering emulsion stabilization of cellulose nanocrystals and application for reinforced and hydrophobic coatings. Coatings 12:1594

    Article  Google Scholar 

  180. Jonoobi M et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22(2):935–969

    Article  CAS  Google Scholar 

  181. Almeida APC, Oliveira J, Fernandes SN, Godinho MH, Canejo JP (2020) All-cellulose composite membranes for oil microdroplet collection. Cellulose 27(8):4665–4677

    Article  CAS  Google Scholar 

  182. Huang Y, Zhan H, Li D, Tian H, Chang C (2019) Tunicate cellulose nanocrystals modified commercial filter paper for efficient oil/water separation. J Memb Sci 591:117362

    Article  CAS  Google Scholar 

  183. Gong X, Wang Y, Zeng H, Betti M, Chen L (2019) Highly porous, hydrophobic, and compressible cellulose nanocrystals/poly(vinyl alcohol) aerogels as recyclable absorbents for oil-water separation. ACS Sustain Chem Eng 7(13):11118–11128

    Article  CAS  Google Scholar 

  184. Chatterjee S, Ke WT, Liao YC (2020) Elastic nanocellulose/graphene aerogel with excellent shape retention and oil absorption selectivity. J Taiwan Inst Chem Eng 111:261–269

    Article  CAS  Google Scholar 

  185. Wang Y et al (2021) Layer-by-layer construction of CS-CNCs multilayer modified mesh with robust anti-crude-oil-fouling performance for efficient oil/water separation. J Memb Sci 639:119776

    Article  CAS  Google Scholar 

  186. Sabzevari S, Hofman J (2022) A worldwide review of currently used pesticides’ monitoring in agricultural soils. Sci Total Environ 812:152344

    Article  CAS  PubMed  Google Scholar 

  187. Yi X, Liu C, Liu X, Wang P, Zhou Z, Liu D (2019) Magnetic partially carbonized cellulose nanocrystal-based magnetic solid phase extraction for the analysis of triazine and triazole pesticides in water. Microchim Acta 186(12):825

    Article  CAS  Google Scholar 

  188. Smeester L, Yosim AE, Nye MD, Hoyo C, Murphy SK, Fry RC (2014) Imprinted genes and the environment: Links to the toxic metals arsenic, cadmium and lead. Genes (Basel) 5(2):477–496

    Article  PubMed  Google Scholar 

  189. Kinuthia GK, Ngure V, Beti D, Lugalia R, Wangila A, Kamau L (2020) Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Sci Rep 10(1):1–13

    Google Scholar 

  190. Ismanto A et al (2023) Groundwater contamination status in Malaysia: level of heavy metal, source, health impact, and remediation technologies.  Bioprocess Biosyst Eng 46(3):467–482

    Article  CAS  PubMed  Google Scholar 

  191. Tahity T et al (2022) Heavy metals accumulation in tissues of wild and farmed barramundi from the northern bay of bengal coast, and its estimated human health risks. Toxics 10(8):410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Pouresmaieli M, Ataei M, Forouzandeh P, Azizollahi P, Mahmoudifard M (2022) Recent progress on sustainable phytoremediation of heavy metals from soil. J Environ Chem Eng 10(5):108482

    Article  CAS  Google Scholar 

  193. Mitra S et al (2022)  Impact of heavy metals on the environment and human health: novel therapeutic insights to counter the toxicity.  J King Saud Univ Sci 34(3):101865

    Article  Google Scholar 

  194. Aoudi B, Boluk Y, Gamal El-Din M (2022)  Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications. Sci Total Environ 843:156903

    Article  CAS  PubMed  Google Scholar 

  195. Jiang H, Wu S, Zhou J (2023) Preparation and modification of nanocellulose and its application to heavy metal adsorption: a review. Int J Biol Macromol 236:123916

    Article  CAS  PubMed  Google Scholar 

  196. Zhu Y, Qu B, Andreeva DV, Ye C, Novoselov KS (2021) Graphene standardization: the lesson from the east. Mater Today 47:9–15

    Article  CAS  Google Scholar 

  197. Singh K, Arora JK, Sinha TJM, Srivastava S (2014) Functionalization of nanocrystalline cellulose for decontamination of cr(III) and cr(VI) from aqueous system: computational modeling approach. Clean Technol Environ Policy 16(6):1179–1191

    Article  CAS  Google Scholar 

  198. Sheikhi A, Safari S, Yang H, van de Ven TGM (2015) Copper removal using electrosterically stabilized nanocrystalline cellulose. ACS Appl Mater Interfaces 7(21):11301–11308

    Article  CAS  PubMed  Google Scholar 

  199. Yu X et al (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25(5):933–943

    Article  CAS  Google Scholar 

  200. Kardam A, Raj KR, Srivastava S, Srivastava MM (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16:385–393

    Article  CAS  Google Scholar 

  201. Singh K, Sinha TJM, Srivastava S (2015)  Functionalized nanocrystalline cellulose: smart biosorbent for decontamination of arsenic.  Int J Miner Proc 139:51–63

    Article  CAS  Google Scholar 

  202. Kumar A, Dixit U, Singh K, Gupta SP, Beg MSJ (2021) Structure and properties of dyes and pigments. Dyes Pigments-Novel Appl Waste Treat 11:131

    Google Scholar 

  203. Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol 41(9):807–878

    Article  CAS  Google Scholar 

  204. Tavakolian M, Wiebe H, Sadeghi MA, van de Ven TGM (2020) Dye removal using hairy nanocellulose: experimental and theoretical investigations. ACS Appl Mater Interfaces 12(4):5040–5049

    Article  CAS  PubMed  Google Scholar 

  205. Yang X, Liu H, Han F, Jiang S, Liu L, Xia Z (2017) Fabrication of cellulose nanocrystal from carex meyeriana kunth and its application in the adsorption of methylene blue. Carbohydr Polym 175:464–472

    Article  CAS  PubMed  Google Scholar 

  206. Zhou C, Lee S, Dooley K, Wu Q (2013) A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations. J Hazard Mater 263:334–341

    Article  CAS  PubMed  Google Scholar 

  207. Anonymous PP (2022) : Causes, effects and amazing solutions, conserve energy future,  https://www.conserve-energy-future.com/pharmaceutical-pollution.php. Accessed 24 Sep 2023

  208. Haddaoui I, Mateo-Sagasta J (2021) A review on occurrence of emerging pollutants in waters of the MENA region. Environ Sci Pollut Res 28(48):68090–68110

    Article  CAS  Google Scholar 

  209. Reid MS, Villalobos M, Cranston ED (2017) The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids. Curr Opin Colloid Interface Sci 29:76–82

    Article  CAS  Google Scholar 

  210. Huang R, Liu Z, Sun B, Fatehi P (2016) Preparation of dialdehyde cellulose nanocrystal as an adsorbent for creatinine. Can J Chem Eng 94(8):1435–1441

    Article  CAS  Google Scholar 

  211. Pires BC, Dutra FVA, Nascimento TA, Borges KB (2017) Preparation of PPy/cellulose fibre as an effective potassium diclofenac adsorbent. React Funct Polym 113:40–49

    Article  CAS  Google Scholar 

  212. Chen L, Berry RM, Tam KC (2014) Synthesis of β–Cyclodextrin-modified cellulose nanocrystals (CNCs)@Fe3O4@SiO2 superparamagnetic nanorods. ACS Sustain Chem Eng 2(4):951–958

    Article  CAS  Google Scholar 

  213. Anirudhan TS, Rejeena SR (2012) Adsorption and hydrolytic activity of trypsin on a carboxylate-functionalized cation exchanger prepared from nanocellulose. J Colloid Interface Sci 381(1):125–136

    Article  CAS  PubMed  Google Scholar 

  214. Rout PR, Zhang TC, Bhunia P, Surampalli RY (2021) Treatment technologies for emerging contaminants in wastewater treatment plants: a review. Sci Total Environ 753:141990

    Article  CAS  PubMed  Google Scholar 

  215. Geissen V et al (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res 3(1):57–65

    Article  Google Scholar 

  216. Alameddine M, Siraki A, Tonoyan L, Gamal El-Din M (2021) Treatment of a mixture of pharmaceuticals, herbicides and perfluorinated compounds by powdered activated carbon and ozone: synergy, catalysis and insights into non-free OH contingent mechanisms. Sci Total Environ 777:146138

    Article  CAS  PubMed  Google Scholar 

  217. İlyasoglu G, Kose-Mutlu B, Mutlu-Salmanli O, Koyuncu I (2022) Removal of organic micropollutans by adsorptive membrane. Chemosphere 302:134775

    Article  PubMed  Google Scholar 

  218. Kinfu HH, Rahman MM, Cevallos-Cueva N, Abetz V (2022) Mass transport of dye solutions through porous membrane containing tannic acid/fe3+ selective layer. Membranes (Basel) 12(12):1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Yang D et al (2022)  Cucurbit[5]uril-based porous polymer material for removing organic micropollutants in water.  Microporous Mesoporous Mater 341:112023

    Article  CAS  Google Scholar 

  220. Barrett SE, Krasner SW, Amy GL (2000) Natural organic matter and disinfection by-products: characterization and control in drinking water - an overview. ACS Symp Ser 761(11):2–14

    Article  CAS  Google Scholar 

  221. Shi X, Zhang X, Ma L, Xiang C, Li L (2019) TiO2-Doped chitosan microspheres supported on cellulose acetate fibers for adsorption and photocatalytic degradation of methyl orange. Polymers (Basel) 11:1293

    Article  CAS  PubMed  Google Scholar 

  222. Das R, Lindström T, Sharma PR, Chi K, Hsiao BS (2022) Nanocellulose for sustainable water purification. Chem Rev 122(9):8936–9031

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors would like to express gratitude for the financial support received from the Pusat Pengurusan Penyelidikan Inovasi (PPPI) Universiti Pertahanan Nasional Malaysia (UPNM) for the financial support. The authors would like to express gratitude for the financial support received from the Universiti Teknologi Malaysia for the project “The impact of Malaysian bamboos’ chemical and fiber characteristics on their pulp and paper properties”, Grant No. PY/2022/02318—Q.J130000.3851.21H99. The research has been carried out under the programme, Research Excellence Consortium (JPT (BPKI) 1000/016/018/25 (57)), provided by the Ministry of Higher Education Malaysia (MOHE).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, R.A.I. and P.S.K.; validation, N.H.A.H., and H.A.A.; resources, A.A.S., E.S., M.N.F.N. and V.F.K.; writing—original draft preparation, A.S.N., P.S.K., and H.A.A. ; writing—review and editing, R.A.I., N.H.A.H., M.N.F.N., V.F.K., M.S.A.R., A.A.S., E.S., and P.K.A.; supervision, R.A.I. and M.N.F.N.; project administration, P.S.K., P.K.A., and H.A.A.; funding acquisition, R.A.I. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to R. A. Ilyas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norfarhana, A.S., Khoo, P.S., Ilyas, R.A. et al. Exploring of Cellulose Nanocrystals from Lignocellulosic Sources as a Powerful Adsorbent for Wastewater Remediation. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03227-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03227-3

Keywords

Navigation