Skip to main content
Log in

All-cellulose composite membranes for oil microdroplet collection

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Oil spills on ocean waters represent a major threat to marine ecosystems. A significant part of the spilled oil is dispersed in microdroplets that are not recovered by traditional oil-removing methods. In this work, we report on the manufacture of cellulose acetate (CA) electrospun non-woven membranes, stamped with different cellulose nanocrystal (CNC) patterns. We demonstrate the use of the membranes produced as selective oil microdroplets removal from water emulsions with an efficiency up to 80%. Screenprinting was used to imprint different CNC designs on the CA surface membranes. To promote the adhesion between the CNCs and the CNCs with the CA fibers the membrane was subjected to a thermal and chemical treatments. Oil droplets were collected under water in the oleophilic CNC pattern while the water could flow through the hydrophilic CA electrospun non-woven membrane.

Graphic abstract

The application of a non-woven all cellulosic composite membrane for separation of a water/oil suspension is presented. The under-water wetting behavior, of annealed cellulose nanocrystals, for oil is studied. Special consideration is given to the capability for the collection of oil micro droplets in aqueous suspension and the influence of the geometrical pattern of the cellulose nanoparticles layer in oil recovery efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andre R, Natalio F, Tahir MN, Berger R, Tremel W (2013) Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass. Nanoscale 5(8):3447–3456

    CAS  PubMed  Google Scholar 

  • Barron MG (2012) Ecological impacts of the deepwater horizon oil spill: implications for immunotoxicity. Toxicol Pathol 40(2):315–320

    CAS  PubMed  Google Scholar 

  • Board NTS (2010) Collision of Tankship Eagle Otome with cargo vessel gull arrow and subsequent collision with the Dixie Vengeance Tow—accident report detail. https://www.ntsb.gov/investigations/AccidentReports/Pages/MAR1104.aspx. Accessed 16 Apr 2018

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. T Faraday Soc 40:546–551

    CAS  Google Scholar 

  • Chen W, Su Y, Zheng L, Wang L, Jiang Z (2009) The improved oil/water separation performance of cellulose acetate-graft-polyacrylonitrile membranes. J Membr Sci 337(1):98–105

    CAS  Google Scholar 

  • Cheng Q, Ye D, Chang C, Zhang L (2017) Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation. J Membr Sci 525:1–8

    CAS  Google Scholar 

  • Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Adv Technol 16(8):600–607

    CAS  Google Scholar 

  • Cranston ED, Gray DG (2006) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules 7(9):2522–2530

    CAS  PubMed  Google Scholar 

  • Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D (2004) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed 43(15):2012–2014

    CAS  Google Scholar 

  • Field RW (2012) Separation by reconfiguration. Nature 489:41

    CAS  PubMed  Google Scholar 

  • Fisher LR, Mitchell EE, Parker NS (1985) Interfacial tensions of commercial vegetable oils with water. J Food Sci 50(4):1201–1202

    CAS  Google Scholar 

  • Gaspar D, Fernandes SN, de Oliveira AG, Fernandes JG, Grey P, Pontes RV, Pereira L, Martins R, Godinho MH, Fortunato E (2014) Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology 25(9):094008

    CAS  PubMed  Google Scholar 

  • Goetz LA, Naseri N, Nair SS, Karim Z, Mathew AP (2018) All cellulose electrospun water purification membranes nanotextured using cellulose nanocrystals. Cellulose 25(5):3011–3023

    CAS  Google Scholar 

  • Haddada R, Ferjani E, Roudesli MS, Deratani A (2004) Properties of cellulose acetate nanofiltration membranes. Application to brackish water desalination. Desalination 167:403–409

    Google Scholar 

  • Hofmann T (1998) Studies on the relationship between molecular weight and the color potency of fractions obtained by thermal treatment of glucose/amino acid and glucose/protein solutions by using ultracentrifugation and color dilution techniques. J Agric Food Chem 46(10):3891–3895

    CAS  Google Scholar 

  • Jianlong G, Dingding Z, Qing J, Jianyong Y, Bin D (2018) Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv Funct Mater 28(10):1705051

    Google Scholar 

  • Jin G, Hao-Yu Z, Hong-Wu Z, Jin H, Lu-An S, Shu-Hong Y (2016) Advanced sorbents for oil-spill cleanup: recent advances and future perspectives. Adv Mater 28(47):10459–10490

    Google Scholar 

  • Ju J, Wang T, Wang Q (2015) A facile approach in fabricating superhydrophobic and superoleophilic poly (vinylidene fluoride) membranes for efficient water–oil separation. J Appl Polym Sci 132(24): Article 42077

    Google Scholar 

  • Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A (2012) Hygro-responsive membranes for effective oil–water separation. Nat Commun 3:1025

    PubMed  Google Scholar 

  • Krebs FC, Jørgensen M, Norrman K, Hagemann O, Alstrup J, Damgaard Nielsen T, Fyenbo J, Larsen K, Kristensen J (2009) A complete process for production of flexible large area polymer solar cells entirely using screen printing—first public demonstration. Sol Energy Mater Sol Cells 93(4):422–441

    CAS  Google Scholar 

  • Kwon G, Kota AK, Li Y, Sohani A, Mabry JM, Tuteja A (2012) On-demand separation of oil–water mixtures. Adv Mater 24(27):3666–3671

    CAS  PubMed  Google Scholar 

  • Li K, Ju J, Xue Z, Ma J, Feng L, Gao S, Jiang L (2013) Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat Commun 4:2276

    PubMed  Google Scholar 

  • Liu M, Wang S, Wei Z, Song Y, Jiang L (2009) Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater 21(6):665–669

    CAS  Google Scholar 

  • Liu Y, Ma J, Wu T, Wang X, Huang G, Liu Y, Qiu H, Li Y, Wang W, Gao J (2013) Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl Mater Interfaces 5(20):10018–10026

    CAS  PubMed  Google Scholar 

  • Ma Q, Cheng H, Fane AG, Wang R, Zhang H (2016) Recent development of advanced materials with special wettability for selective oil/water separation. Small 12(16):2186–2202

    CAS  PubMed  Google Scholar 

  • Maguire-Boyle SJ, Barron AR (2011) A new functionalization strategy for oil/water separation membranes. J Membr Sci 382(1):107–115

    CAS  Google Scholar 

  • Melo-Espinosa EA, Sánchez-Borroto Y, Errasti M, Piloto-Rodríguez R, Sierens R, Roger-Riba J, Christopher-Hansen A (2014) Surface tension prediction of vegetable oils using artificial neural networks and multiple linear regression. Energy Procedia 57:886–895

    CAS  Google Scholar 

  • Meng Y, Young TM, Liu P, Contescu CI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22(1):435–447

    CAS  Google Scholar 

  • Morais JPS, Rosa MdF, de Souza Filho MdsM, Nascimento LD, do Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91(1):229–235

    CAS  PubMed  Google Scholar 

  • Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on −CF3 alignment. Langmuir 15(13):4321–4323

    CAS  Google Scholar 

  • Padaki M, Surya Murali R, Abdullah MS, Misdan N, Moslehyani A, Kassim MA, Hilal N, Ismail AF (2015) Membrane technology enhancement in oil–water separation. A review. Desalination 357:197–207

    CAS  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    CAS  PubMed  Google Scholar 

  • Rohrbach K, Li Y, Zhu H, Liu Z, Dai J, Andreasen J, Hu L (2014) A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chem Commun 50(87):13296–13299

    CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677

    CAS  PubMed  Google Scholar 

  • Shin C, Chase GG (2004) Water-in-oil coalescence in micro-nanofiber composite filters. AIChE J 50(2):343–350

    CAS  Google Scholar 

  • Streitwieser A, Heathcock CH, Kosower EM (1998) Introduction to organic chemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Suzuki Y, Maruyama T (2005) Removal of emulsified oil from water by coagulation and foam separation. Sep Sci Technol 40(16):3407–3418

    CAS  Google Scholar 

  • Tian Y, Wu M, Liu R, Li Y, Wang D, Tan J, Wu R, Huang Y (2011) Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydr Polym 83(2):743–748

    CAS  Google Scholar 

  • Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431

    CAS  Google Scholar 

  • Wang Z-X, Lau C-H, Zhang N-Q, Bai Y-P, Shao L (2015) Mussel-inspired tailoring of membrane wettability for harsh water treatment. J Mater Chem A 3(6):2650–2657

    CAS  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    CAS  Google Scholar 

  • Xu H, Liu J, Wang Y, Cheng G, Deng X, Li X (2015) Oil removing efficiency in oil–water separation flotation column. Desalin Water Treat 53(9):2456–2463

    CAS  Google Scholar 

  • Xue Z, Cao Y, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2(8):2445–2460

    CAS  Google Scholar 

  • Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2002) Novel cellulose acetate membrane blended with phospholipid polymer for hemocompatible filtration system. J Membr Sci 210(2):411–421

    CAS  Google Scholar 

  • Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2003) Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials 24(23):4143–4152

    CAS  PubMed  Google Scholar 

  • Yong J, Chen F, Yang Q, Zhang D, Farooq U, Du G, Hou X (2014) Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication. J Mater Chem A 2(23):8790–8795

    CAS  Google Scholar 

  • Yoon H, Na S-H, Choi J-Y, Latthe SS, Swihart MT, Al-Deyab SS, Yoon SS (2014) Gravity-driven hybrid membrane for oleophobic-superhydrophilic oil–water separation and water purification by graphene. Langmuir 30(39):11761–11769

    CAS  PubMed  Google Scholar 

  • Zhan H, Peng N, Lei X, Huang Y, Li D, Tao R, Chang C (2018a) UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion. Carbohydr Polym 201:464–470

    CAS  PubMed  Google Scholar 

  • Zhan H, Zuo T, Tao R, Chang C (2018b) Robust Tunicate cellulose nanocrystal/palygorskite nanorod membranes for multifunctional oil/water emulsion separation. ACS Sustain Chem Eng 6(8):10833–10840

    CAS  Google Scholar 

  • Zhang W, Zhu Y, Liu X, Wang D, Li J, Jiang L, Jin J (2014) Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew Chem Int Ed 53(3):856–860

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by FEDER funds through the COMPETE 2020 Program and National Funds through FCT—Portuguese Foundation for Science and Technology, reference UID/CTM/50025/2019 and FCT/MCTES and POR Lisboa2020 under projects numbers POCI-01-0145-FEDER-007688, PTDC/FIS-NAN/0117/2014, PTDC/CTM-BIO/6178/2014, M-ERA-NET2/0007/ 2016 (CellColor) and PTDC/CTM-REF/30529/2017. A.P.A. acknowledge the Minister of Science, Technology, and Higher Education for National Funds, European Social Funds, and FCT for the fellowship with reference SFRH/BD/115567/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João P. Canejo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1706 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, A.P.C., Oliveira, J., Fernandes, S.N. et al. All-cellulose composite membranes for oil microdroplet collection. Cellulose 27, 4665–4677 (2020). https://doi.org/10.1007/s10570-020-03077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03077-x

Keywords

Navigation