Skip to main content
Log in

Pelargonium as a cost-effective Additive in Bio-composite Adsorbent in Removing dyes from Wastewater: Equilibrium, Kinetic, and Thermodynamic studies

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, pelargonium (Plg) was used as a biosorbent to remove Methylene blue (MB), Methyl orange (MO), Congo red (CR), Malachite green (MG), Safranine (SA), and Fuchsine (FU) from water. Due to its high availability, biocompatibility, and economic efficiency, salep was used as a substrate in producing of hydrogel-based semi-IPN biosorbent with entrapped Plg to remove dyes from water. To produce a hydrogel-based composite, salep biopolymer was used in the presence of acrylamide monomer, ammonium persulfate (APS) as an initiator, N,N’-Methylenebisacrylamide (MBA) as a crosslinker, and powdered Plg leaves as an additive in the polymer matrix. The Plg biosorbent was characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), and thermo thermal gravimetric analysis (TGA). The studied parameters are swelling measurements, contact time, biosorbent dosage effect, and the reusability potential of the prepared biosorbent. Equilibrium data were analyzed using the Langmuir, Freundlich, and Temkin isotherm models. The equilibrium data were best represented by the Langmuir isotherm, with a prediction R2 of 0.9916. Adsorption kinetic data were fitted using pseudo-first-order, pseudo-second-order, and intraparticle diffusion. The adsorption kinetics for the dye on the Plg biosorbent was best described by the second-order kinetic equation. In addition, the biosorption process was exothermic and spontaneous. The results obtained proved that the Plg biosorbent, including 3 wt% bio-additive at optimal conditions, at room temperature, the dosage of 0.5 g for biosorbent pretreated, pH of 7, and 20 ppm of initial dye concentration with 120 min of contact time demonstrated the best performance of the dye removal: 93.19% for MB, 82.25% for MO, 73.3% for MG, 96.9% for CR, 90% for FU, and 65.1% for SA after 2 h contact time, and great recoverability was achieved after three cycles of recovering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bensalah J, Berradi M, Habsaoui A et al (2021) Kinetic and thermodynamic study of the adsorption of cationic dyes by the cationic artificial resin Amberlite®IRC50. Materials: Today Proceedings 45:7468–7472. https://doi.org/10.1016/j.matpr.2021.02.028

    Article  CAS  Google Scholar 

  2. El-Safty SA, Shahat A, Awual MR (2011) Efficient adsorbents of nanoporous aluminosilicate monoliths for organic dyes from aqueous solution. J Colloid Interface Sci 359:9–18. https://doi.org/10.1016/j.jcis.2011.01.006

    Article  CAS  PubMed  Google Scholar 

  3. Islam A, Teo SH, Taufiq-Yap YH et al (2021) Step towards the sustainable toxic dyes removal and recycling from aqueous solution- A comprehensive review. Resour Conserv Recycl 175:105849. https://doi.org/10.1016/j.resconrec.2021.105849

    Article  CAS  Google Scholar 

  4. Yeamin MB, Islam MM, Chowdhury A-N et al (2021) Efficient encapsulation of toxic dyes from wastewater using several biodegradable natural polymers and their composites. J Clean Prod 291:125920. https://doi.org/10.1016/j.jclepro.2021.125920

    Article  CAS  Google Scholar 

  5. Teo SH, Ng CH, Islam A et al (2022) Sustainable toxic dyes removal with advanced materials for clean water production: a comprehensive review. J Clean Prod 332:130039. https://doi.org/10.1016/j.jclepro.2021.130039

    Article  CAS  Google Scholar 

  6. Nozad E, Poursattar Marjani A, Mahmoudian M (2022) A novel and facile semi-IPN system in fabrication of solvent resistant nano-filtration membranes for effective separation of dye contamination in water and organic solvents. Sep Purif Technol 282:120121. https://doi.org/10.1016/j.seppur.2021.120121

    Article  CAS  Google Scholar 

  7. Mohebali S, Bastani D, Shayesteh H (2018) Methylene blue removal using modified celery (Apium graveolens) as a low-cost biosorbent in batch mode: kinetic, equilibrium, and thermodynamic studies. J Mol Struct 1173. https://doi.org/10.1016/j.molstruc.2018.07.016

    Article  Google Scholar 

  8. Hevira L, Zilfa, Rahmayeni et al (2021) Terminalia catappa shell as low-cost biosorbent for the removal of methylene blue from aqueous solutions. J Ind Eng Chem 97:188–199. https://doi.org/10.1016/j.jiec.2021.01.028

    Article  CAS  Google Scholar 

  9. Mahmoudian M, Balkanloo PG, Nozad E (2018) A facile method for dye and heavy metal elimination by pH sensitive acid activated montmorillonite/polyethersulfone nanocomposite membrane. Chin J Polym Sci 36:49–57. https://doi.org/10.1007/s10118-018-2004-3

    Article  CAS  Google Scholar 

  10. Moorthy AK, Rathi BG, Shukla SP et al (2021) Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae. Environ Toxicol Pharmacol 82:103552. https://doi.org/10.1016/j.etap.2020.103552

    Article  CAS  Google Scholar 

  11. Patel H, Vashi R (2013) A comparison study of removal of methylene blue dye by adsorption on neem leaf powder (NLP) and activated NLP. J Environ Eng Landsc Manage 21:36–41. https://doi.org/10.3846/16486897.2012.671772

    Article  Google Scholar 

  12. Bensalah J, Habsaoui A, Dagdag O et al (2021) Adsorption of a cationic dye (safranin) by artificial cationic resins Amberlite®IRC-50: equilibrium, kinetic and thermodynamic study. Chem Data Collections 35:100756. https://doi.org/10.1016/j.cdc.2021.100756

    Article  CAS  Google Scholar 

  13. Iwuozor KO, Ighalo JO, Emenike EC et al (2021) Adsorption of methyl orange: a review on adsorbent performance. Curr Res Green Sustainable Chem 4:100179. https://doi.org/10.1016/j.crgsc.2021.100179

    Article  CAS  Google Scholar 

  14. Mahmoudian M, Balkanloo PG (2017) Clay-hyperbranched epoxy/polyphenylsulfone nanocomposite membranes. Iran Polym J 26:711–720. https://doi.org/10.1007/s13726-017-0556-7

    Article  CAS  Google Scholar 

  15. Alaguprathana M, Poonkothai M (2021) Haematological, biochemical, enzymological and histological responses of Labeo rohita exposed to methyl orange dye solution treated with Oedogonium subplagiostomum AP1. Environ Sci Pollut Res Int 28:17602–17612. https://doi.org/10.1007/s11356-020-12208-7

    Article  CAS  PubMed  Google Scholar 

  16. Ding F, Li X-N, Diao J-X et al (2012) Potential toxicity and affinity of triphenylmethane dye malachite green to lysozyme. Ecotoxicol Environ Saf 78:41–49. https://doi.org/10.1016/j.ecoenv.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  17. Karuppasamy K, Vikraman D, Hussain T et al (2021) Ternary Zn1-xNixSe nanostructures as efficient photocatalysts for detoxification of hazardous Congo red, methyl orange, and chrome yellow dyes in wastewater sources. Environ Res 201:111587. https://doi.org/10.1016/j.envres.2021.111587

    Article  CAS  PubMed  Google Scholar 

  18. Hernández-Zamora M, Martínez-Jerónimo F (2019) Congo red dye diversely affects organisms of different trophic levels: a comparative study with microalgae, cladocerans, and zebrafish embryos. Environ Sci Pollut Res Int 26:11743–11755. https://doi.org/10.1007/s11356-019-04589-1

    Article  CAS  PubMed  Google Scholar 

  19. Fayazi M, Afzali D, Taher MA et al (2015) Removal of safranin dye from aqueous solution using magnetic mesoporous clay: optimization study. J Mol Liq 212:675–685. https://doi.org/10.1016/j.molliq.2015.09.045

    Article  CAS  Google Scholar 

  20. El Haddad M (2016) Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: equilibrium, kinetics, and thermodynamics. J Taibah Univ Sci 10:664–674. https://doi.org/10.1016/j.jtusci.2015.08.007

    Article  Google Scholar 

  21. Mondal S (2008) Methods of dye removal from dye house effluent—an overview. Environ Eng Sci 25:383–396. https://doi.org/10.1089/ees.2007.0049

    Article  CAS  Google Scholar 

  22. Kheradmand A, Negarestani M, Kazemi S et al (2022) Adsorption behavior of rhamnolipid modified magnetic Co/Al layered double hydroxide for the removal of cationic and anionic dyes. Sci Rep 12:1–17. https://doi.org/10.1038/s41598-022-19056-0

    Article  CAS  Google Scholar 

  23. Gozali Balkanloo P, Khazani Y, Mahmoudian M (2022) Zwitterionic copolymer containing diallyldimethylammonium chloride and acrylic acid on carboxylated-MWCNTs. Mater Today Commun 30:103145. https://doi.org/10.1016/j.mtcomm.2022.103145

    Article  CAS  Google Scholar 

  24. Mahmoudian M, Khazani Y, Gozali Balkanloo P et al (2021) Poly(diallyldimethylammonium chloride)-grafted carboxylated-MWCNT as an additive in the polyethersulfone membrane. Polym Bull 78:4313–4332. https://doi.org/10.1007/s00289-020-03316-y

    Article  CAS  Google Scholar 

  25. Atalay S, Ersöz G (2015) Advanced Oxidation Processes for Removal of Dyes from Aqueous Media. In: Green Chemistry for Dyes Removal from Wastewater, pp 83–117

    Google Scholar 

  26. Matilainen A, Vepsäläinen M, Sillanpää M (2010) Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Colloid Interface Sci 159:189–197. https://doi.org/10.1016/j.cis.2010.06.007

    Article  CAS  PubMed  Google Scholar 

  27. Sofińska K, Lupa D, Chachaj-Brekiesz A et al (2022) Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 301:102614. https://doi.org/10.1016/j.cis.2022.102614

    Article  CAS  PubMed  Google Scholar 

  28. Khraisheh M, Al-Ghouti MA, Almomani F (2020) P. putida as biosorbent for the remediation of cobalt and phenol from industrial waste wastewaters. Environ Technol Innov 20:101148. https://doi.org/10.1016/j.eti.2020.101148

    Article  CAS  Google Scholar 

  29. Teo SH, Ng CH, Islam A et al (2021) Sustainabletoxic dyes removal with advanced materials for clean water production: a comprehensive review. J Clean Production:130039. https://doi.org/10.1016/j.jclepro.2021.130039

    Article  Google Scholar 

  30. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal–a review. J Environ Manage 90:2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017

    Article  CAS  PubMed  Google Scholar 

  31. Gozali Balkanloo P, Mahmoudian M, Hosseinzadeh MT (2020) A comparative study between MMT-Fe3O4/PES, MMT-HBE/PES, and MMT-acid activated/PES mixed matrix membranes. Chem Eng J 396:125188. https://doi.org/10.1016/j.cej.2020.125188

    Article  CAS  Google Scholar 

  32. Moradihamedani P (2022) Recent advances in dye removal from wastewater by membrane technology: a review. Polym Bull 79:2603–2631. https://doi.org/10.1007/s00289-021-03603-2

    Article  CAS  Google Scholar 

  33. Abid MF, Zablouk MA, Abid-Alameer AM (2012) Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iran J Environ Health Sci Eng 9:17. https://doi.org/10.1186/1735-2746-9-17

    Article  CAS  Google Scholar 

  34. Brito CN, Ferreira MB, De Moura Santos ECM et al (2018) Electrochemical degradation of azo-dye Acid Violet 7 using BDD anode: effect of flow reactor configuration on cell hydrodynamics and dye removal efficiency. J Appl Electrochem 48:1321–1330. https://doi.org/10.1007/s10800-018-1257-4

    Article  CAS  Google Scholar 

  35. García-Morales M, Roa-Morales G, Barrera-Díaz C et al (2013) Integrated advanced oxidation process (ozonation) and electrocoagulation treatments for dye removal in denim effluents. Int J Electrochem Sci 8:8752–8763

    Google Scholar 

  36. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6:4676–4697. https://doi.org/10.1016/j.jece.2018.06.060

    Article  CAS  Google Scholar 

  37. Kumar V, Kaith B, Jindal R (2016) Synthesis of hybrid ion exchanger for rhodamine B dye removal: equilibrium, kinetic and thermodynamic studies. Ind Eng Chem Res 55:10492–10499. https://doi.org/10.1021/acs.iecr.6b01690

    Article  CAS  Google Scholar 

  38. Bagotia N, Sharma AK, Kumar S (2021) A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere 268:129309. https://doi.org/10.1016/j.chemosphere.2020.129309

    Article  CAS  PubMed  Google Scholar 

  39. Naushad M, Alqadami AA, Al-Kahtani AA et al (2019) Adsorption of textile dye using para-aminobenzoic acid modified activated carbon: kinetic and equilibrium studies. J Mol Liq 296:112075. https://doi.org/10.1016/j.molliq.2019.112075

    Article  CAS  Google Scholar 

  40. Faisal AA, Shihab AH, Naushad M et al (2021) Green synthesis for novel sorbent of sand coated with (Ca/Al)-layered double hydroxide for the removal of toxic dye from aqueous environment. J Environ Chem Eng 9:105342. https://doi.org/10.1016/j.jece.2021.105342

    Article  CAS  Google Scholar 

  41. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  42. Dai L, Wang Z, Guo T et al (2022) Pollution characteristics and source analysis of microplastics in the Qiantang River in southeastern China. Chemosphere 293:133576. https://doi.org/10.1016/j.chemosphere.2022.133576

    Article  CAS  PubMed  Google Scholar 

  43. Kubra KT, Salman MS, Hasan MN (2021) Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J Mol Liq 328:115468. https://doi.org/10.1016/j.molliq.2021.115468

    Article  CAS  Google Scholar 

  44. Hasan MM, Shenashen M, Hasan MN et al (2021) Natural biodegradable polymeric bioadsorbents for efficient cationic dye encapsulation from wastewater. J Mol Liq 323:114587. https://doi.org/10.1016/j.molliq.2020.114587

    Article  CAS  Google Scholar 

  45. Van Tran V, Park D, Lee Y-C (2018) Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ Sci Pollut Res 25:24569–24599. https://doi.org/10.1007/s11356-018-2605-y

    Article  CAS  Google Scholar 

  46. Azizi-Lalabadi M, Jafari SM (2021) Bio-nanocomposites of graphene with biopolymers; fabrication, properties, and applications. Adv Colloid Interface Sci 292:102416. https://doi.org/10.1016/j.cis.2021.102416

    Article  CAS  PubMed  Google Scholar 

  47. Mallakpour S, Tukhani M, Hussain CM (2021) Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: utilization in tissue engineering. Adv Colloid Interface Sci 292:102415. https://doi.org/10.1016/j.cis.2021.102415

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Lu H, Yu J et al (2018) Synthesis of lignocellulose-based composite hydrogel as a novel biosorbent for Cu2 + removal. Cellulose 25:7315–7328. https://doi.org/10.1007/s10570-018-2077-8

    Article  CAS  Google Scholar 

  49. Munjur HM, Hasan MN, Awual MR et al (2020) Biodegradable natural carbohydrate polymeric sustainable adsorbents for efficient toxic dye removal from wastewater. J Mol Liq 319:114356. https://doi.org/10.1016/j.molliq.2020.114356

    Article  CAS  Google Scholar 

  50. Bai B, Bai F, Li X et al (2022) The remediation efficiency of heavy metal pollutants in water by industrial red mud particle waste. Environ Technol Innov 28:102944. https://doi.org/10.1016/j.eti.2022.102944

    Article  CAS  Google Scholar 

  51. Pan D, Chen H (2021) Border pollution reduction in China: the role of livestock environmental regulations. China Econ Rev 69:101681. https://doi.org/10.1016/j.chieco.2021.101681

    Article  Google Scholar 

  52. Bai B, Rao D, Chang T et al (2019) A nonlinear attachment-detachment model with adsorption hysteresis for suspension-colloidal transport in porous media. J Hydrol 578:124080. https://doi.org/10.1016/j.jhydrol.2019.124080

    Article  CAS  Google Scholar 

  53. Guan Q, Zeng G, Song J et al (2021) Ultrasonic power combined with seed materials for recovery of phosphorus from swine wastewater via struvite crystallization process. J Environ Manage 293:112961. https://doi.org/10.1016/j.jenvman.2021.112961

    Article  CAS  PubMed  Google Scholar 

  54. Liu Y, Li B, Lei X et al (2022) Novel method for high-performance simultaneous removal of NOx and SO2 by coupling yellow phosphorus emulsion with red mud. Chem Eng J 428:131991. https://doi.org/10.1016/j.cej.2021.131991

    Article  CAS  Google Scholar 

  55. Li Y, Bai Q, Guan Y et al (2022) In situ plasma cleaning of large-aperture optical components in ICF. Nucl Fusion 62:076023. https://doi.org/10.1088/1741-4326/ac555c

    Article  Google Scholar 

  56. Li X, Yang B, Feng L et al (2019) Research progress of natural polymers in wastewater treatment. Mini-Rev Org Chem 16:335–344. https://doi.org/10.2174/1570193X15666180326120151

    Article  CAS  Google Scholar 

  57. Kubra KT, Salman MS, Znad H et al (2021) Efficient encapsulation of toxic dye from wastewater using biodegradable polymeric adsorbent. J Mol Liq 329:115541. https://doi.org/10.1016/j.molliq.2021.115541

    Article  CAS  Google Scholar 

  58. Silva AC, Silvestre AJ, Vilela C et al (2021) Natural polymers-based materials: a contribution to a greener future. Molecules 27:94. https://doi.org/10.3390/molecules27010094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brendler T, Van Wyk B-E (2008) A historical, scientific and commercial perspective on the medicinal use of Pelargonium sidoides (Geraniaceae). J Ethnopharmacol 119:420–433. https://doi.org/10.1016/j.jep.2008.07.037

    Article  CAS  PubMed  Google Scholar 

  60. Khandaker S, Chowdhury MF, Awual MR et al (2021) Efficient cesium encapsulation from contaminated water by cellulosic biomass based activated wood charcoal. Chemosphere 262:127801. https://doi.org/10.1016/j.chemosphere.2020.127801

    Article  CAS  PubMed  Google Scholar 

  61. Nizam NUM, Hanafiah MM, Mahmoudi E et al (2021) The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Sci Rep 11:8623. https://doi.org/10.1038/s41598-021-88084-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ben-Ali S, Jaouali I, Souissi-Najar S et al (2017) Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. J Clean Prod 142:3809–3821. https://doi.org/10.1016/j.jclepro.2016.10.081

    Article  CAS  Google Scholar 

  63. Jamoussi B, Chakroun R, Jablaoui C et al (2020) Efficiency of Acacia Gummifera powder as biosorbent for simultaneous decontamination of water polluted with metals. Arab J Chem 13:7459–7481. https://doi.org/10.1016/j.arabjc.2020.08.022

    Article  CAS  Google Scholar 

  64. Bensalah J, Amri AE, Ouass A et al (2022) Investigation of the cationic resin Am®IRC-50 as a potential adsorbent of Co (II): Equilibrium isotherms and thermodynamic studies. Chem Data Collections 39:100879. https://doi.org/10.1016/j.cdc.2022.100879

    Article  CAS  Google Scholar 

  65. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  66. Rasoulpoor K, Poursattar Marjani A, Nozad E (2020) Competitive chemisorption and physisorption processes of a walnut shell based semi-IPN bio-composite adsorbent for lead ion removal from water: equilibrium, kinetic and thermodynamic studies. Environ Technol Innov 20:101133. https://doi.org/10.1016/j.eti.2020.101133

    Article  CAS  Google Scholar 

  67. Aichour A, Zaghouane-Boudiaf H, Djafer Khodja H (2022) Highly removal of anionic dye from aqueous medium using a promising biochar derived from date palm petioles: characterization, adsorption properties and reuse studies. Arab J Chem 15:103542. https://doi.org/10.1016/j.arabjc.2021.103542

    Article  CAS  Google Scholar 

  68. Fontana KB, Chaves ES, Sanchez JDS et al (2016) Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies. Ecotoxicol Environ Saf 124:329–336. https://doi.org/10.1016/j.ecoenv.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  69. Lee LY, Gan S, Tan MSY et al (2016) Effective removal of Acid Blue 113 dye using overripe Cucumis sativus peel as an eco-friendly biosorbent from agricultural residue. J Clean Prod 113:194–203. https://doi.org/10.1016/j.jclepro.2015.11.016

    Article  CAS  Google Scholar 

  70. Angelova R, Baldikova E, Pospiskova K et al (2016) Magnetically modified Sargassum horneri biomass as an adsorbent for organic dye removal. J Clean Prod 137:189–194. https://doi.org/10.1016/j.jclepro.2016.07.068

    Article  CAS  Google Scholar 

  71. Yang X, Wang L, Shao X et al (2022) Preparation of biosorbent for the removal of organic dyes from aqueous solution via one-step alkaline ball milling of hickory wood. Bioresour Technol 348:126831. https://doi.org/10.1016/j.biortech.2022.126831

    Article  CAS  PubMed  Google Scholar 

  72. Fauzia S, Aziz H, Dahlan D et al (2018) Study of equilibrium, kinetic and thermodynamic for removal of Pb (II) in aqueous solution using Sago bark (Metroxylon sago). In: AIP Conference Proceedings. AIP Publishing LLC, p 020081

    Google Scholar 

  73. Aragaw TA, Bogale FM (2021) Biomass-based adsorbents for removal of dyes from Wastewater: a review. Front Environ Sci. https://doi.org/10.3389/fenvs.2021.764958

    Article  Google Scholar 

  74. Sulak MT, Yatmaz HC (2012) Removal of textile dyes from aqueous solutions with eco-friendly biosorbent. Desalination Water Treat 37:169–177. https://doi.org/10.1080/19443994.2012.661269

    Article  CAS  Google Scholar 

  75. Vadivelan V, Kumar KV (2005) Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci 286:90–100. https://doi.org/10.1016/j.jcis.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  76. Osma JF, Saravia V, Toca-Herrera JL et al (2007) Sunflower seed shells: a novel and effective low-cost adsorbent for the removal of the diazo dye reactive black 5 from aqueous solutions. J Hazard Mater 147:900–905. https://doi.org/10.1016/j.jhazmat.2007.01.112

    Article  CAS  PubMed  Google Scholar 

  77. Afshin S, Mokhtari SA, Vosoughi M et al (2018) Data of adsorption of Basic Blue 41 dye from aqueous solutions by activated carbon prepared from filamentous algae. Data Brief 21:1008–1013. https://doi.org/10.1016/j.dib.2018.10.023

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hema M, Arivoli S (2008) Adsorption kinetics and thermodynamics of malachite green dye unto acid activated low cost carbon. J Appl Sci Environ Manage. https://doi.org/10.4314/jasem.v12i1.55568

    Article  Google Scholar 

  79. Reis H, Cossolin A, Santos B et al (2018) Malt bagasse waste as biosorbent for malachite green: an ecofriendly approach for dye removal from aqueous solution. Int J Biotechnol Bioeng 12:118–126. https://doi.org/10.5281/zenodo.1340591

    Article  Google Scholar 

  80. Grassi P, Drumm FC, Spannemberg SS et al (2020) Solid wastes from the enzyme production as a potential biosorbent to treat colored effluents containing crystal violet dye. Environ Sci Pollut Res Int 27:10484–10494. https://doi.org/10.1007/s11356-020-07664-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Urmia University for supporting this research.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

With respect “HS wrote the main manuscript and drew the figures and tables, “PG reviewed and corrected all items that needed to be corrected in the article and helped in the correction of the tables and figures, and “AP had complete supervision and revision during the writing of the article. All authors reviewed the manuscript. HSA: Laboratory experimental activities, Sample preparation for analysis, Data curation, Writing - original draft. APM: Project administration, Supervision, Conceptualization, Methodology, Writing - review and edition, Data interpretation. PGB: Methodology, Conceptualization, Data curation, Software, Data interpretation, Review and edition.

Corresponding author

Correspondence to Ahmad Poursattar Marjani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarreshtehdar Aslaheh, H., Poursattar Marjani, A. & Gozali Balkanloo, P. Pelargonium as a cost-effective Additive in Bio-composite Adsorbent in Removing dyes from Wastewater: Equilibrium, Kinetic, and Thermodynamic studies. J Polym Environ 31, 3230–3247 (2023). https://doi.org/10.1007/s10924-023-02794-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02794-1

Keywords

Navigation